DOI: 10.25881/20728255_2025_20_1_127

Authors

Agapov A.B.1, 2, Kalinin R.E.1, Suchkov I.A.1, Mzhavanadze N.D.1, 3, Povarov V.O.1, Nikiforov A.A.1, Snegur S.V.2

1 Ryazan State Medical University named after Academician I.P. Pavlov of the Ministry of Health of the Russian Federation, Ryazan

2 Regional Clinical Hospital, Ryazan

3 City Clinical Hospital of Emergency Medical Care, Ryazan

Abstract

The coronavirus pandemic has shown the global medical community that effective treatment of acute respiratory disease requires a lot of effort. Scientists and clinicians have managed to develop diagnostic and treatment algorithms, identify patients with a high risk of thrombotic complications and death. This required studying the pathogenesis of the disease, which is based on two conditions: coagulopathy and inflammation. Therefore, during the pandemic, laboratory studies of inflammation and blood clotting parameters were conducted to search for markers of thrombotic complications and markers that signal a deterioration in the condition. Expanding the boundaries of knowledge in laboratory research will allow for more advanced complex treatment and reduce potential complications of coronavirus infection.

Keywords: coronavirus infection, coagulopathy, inflammation, laboratory diagnostics.

References

1. Agapov AB, Kalinin RE, Mzhavanadze ND, et al. Risk Factors of Bleedings in Patients with COVID-19 Receiving Anticoagulants for Venous Thromboembolism Prevention. Journal of Venous Disorders. 2024; 18(3): 222-231. (In Russ.) doi: 10.17116/flebo202418031222.

2. Kalinin RE, Suchkov IA, Agapov AB, et al. Analysis of risk factors for venous thromboembolic complications and different variants of anticoagulant therapy in patients with novel coronavirus infection. Rossijskij mediko-biologicheskij vestnik imeni akademika I.P. Pavlova. 2023; 31(2): 243-50. (In Russ.) doi: 10.17816/PAVLOVJ110956.

3. Agapov AB, Kalinin RE, Mzhavanadze ND, et al. Evaluation of Inflammation and Platelet Apoptosis Parameters in Obese Patients in Various Types of Anticoagulant Prophylaxis of Venous Thromboembolic Complications in Context of COVID-19. I.P. Pavlov Russian Medical Biological Herald. 2024; 32(3): 413-424. (In Russ.) doi: 10.17816/PAVLOVJ631743.

4. Kalinin RE, Suchkov IA, Filimonov VB, et al. Venous Thromboembolism in COVID-19 Patients During the First and the Second Waves of the Pandemic: Real-Practice Data. Flebologiya. 2022; 16(2): 122-129. (In Russ.) doi: 10.17116/flebo202216021122.

5. Borodina IA, Selezneva IA, Borisova OV, et al. Blood groups and secretory state in COVID-19. Nauka molodyh (Eruditio Juvenium). 2021; 9(4): 589-596. (In Russ.) doi: 10.23888/ HMJ202194589-596.

6. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 368. 2020; 473-474. doi: 10.1126/science.abb8925.

7. Panigada M, Bottino N, Tagliabue P, et al Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020; 18(7): 1738-1742. doi: 10.1111/jth.14850.

8. Kalinin RE, Suchkov IA, Povarov VO, Mzhavanadze ND, Zhurina ON. Hemostasis system in patients with bradycardias after the implantation of dual-chamber pacemakers. I.P. Pavlov Russian Medical Biological Herald. 2021; 29(4): 497-504. (In Russ.) doi: 10.17816/PAVLOVJ79285.

9. Zarychanski R, Houston DS. Assessing thrombocytopenia in the intensive care unit: the past, present, and future. Hematology Am Soc Hematol Educ Program. 2017; 2017(1): 660-666. doi: 10.1182/asheducation-2017.1.660.

10. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020; 383(2): 120-8. doi: 10.1016/10.1056/NEJMoa2015432.

11. Jolicoeur P, Lamontagne L. Impairment of bone marrow pre-B and B cells in MHV3 chronically-infected mice. Adv. Exp. Med. Biol. 1995; 380: 193-195. doi: 10.1007/978-1-4615-1899-0_33.

12. Yang M, Ng MHL, Li CK. Thrombocytopenia in patients with severe acute respiratory syndrome (review) Hematology. 2005; 10: 101-105. doi: 10.1080/10245330400026170.

13. WHO-China Joint Mission, Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), (2020). [URL].

14. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endothliitis in COVID-19. Lancet. 2020. In press. doi: 10.1016/S0140-6736(20) 30937-5.

15. Wardhani LFK, Dewi IP, Suwanto D, et al Heparin-Induced Thrombocytopenia during COVID-19 Outbreak: the Importance of Scoring System in Differentiating with Sepsis-Induced Coagulopathy. F1000Res. 2021; 10: 469. doi: 10.12688/f1000research.52425.2.

16. Koupenova M, Corkrey HA, Vitseva O, et al. SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circ Res. 2021; 129(6): 631-646. doi: 10.1161/CIRCRESAHA.121.319117.

17. Zaid Y, Puhm F, Allaeys I, et al. Platelets can associate with sars-cov-2 rna and are hyperactivated in covid-19. Circ Res. 2020; 127: 1404-1418. doi: 10.1161/CIRCRESAHA.120.317703.

18. Mao L, Jin H, Wang M, Hu Y, et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-90. doi: 10.1001/jamaneurol.2020.1127.

19. Fogarty H, Townsend L, Ni Cheallaigh C, et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol. 2020; 189(6): 1044-1049. doi: 10.1111/bjh.16749.

20. Abd El-Lateef AE, Alghamdi S, Ebid G, et al. Coagulation Profile in COVID-19 Patients and its Relation to Disease Severity and Overall Survival: A Single-Center Study. Br J Biomed Sci. 2022; 79: 10098. doi: 10.3389/ bjbs.2022.10098.

21. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020; 506: 145-148. doi: 10.1016/j.cca.2020.03.022.

22. Tang N, Li D, Wang X, Sun Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J Thromb Haemost. 2020; 18(4): 844-7. doi: 10.1111/jth.14768.

23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-1062. doi: 10.1016/S0140-6736 (20)30566-3.

24. Guan WJ, Ni ZY, Hu Y, et al; China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032.

25. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.

26. Escher R, Breakey N, Lämmle B. Severe COVID-19 Infection Associated with Endothelial Activation. Thromb Res. 2020; 190: 62. doi: 10.1016/ j.thromres.2020.04.014.

27. Yang X, Yu Y, Xu J, et al Clinical cours and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5): 475-481. doi: 10.1016/S2213-2600(20)30079-5.

28. Han W, Quan B, Guo Y, et al. The Course of Clinical Diagnosis and Treatment of a Case Infected with Coronavirus Disease 2019. J Med Virol. 2020; 92(5): 461-3. doi: 10.1002/jmv.25711.

29. Yin S, Huang M, Li D, Tang N. Difference of Coagulation Features between Severe Pneumonia Induced by SARS-CoV2 and Non-SARS-CoV2. J Thromb Thrombolysis. 2021; 51(4): 1107-10. doi: 10.1007/s11239-020-02105-8.

30. Long H, Nie L, Xiang X, et al. D-dimer and Prothrombin Time Are the Significant Indicators of Severe COVID-19 and Poor Prognosis. Biomed Res Int. 2020; 2020: 6159720. doi: 10.1155/2020/6159720.

31. Ranucci M, Ballotta A, Di Dedda U, et al. The Procoagulant Pattern of Patients with COVID-19 Acute Respiratory Distress Syndrome. J Thromb Haemost. 2020; 18(7): 1747-51. doi: 10.1111/jth.14854.

32. Helms J, Tacquard C, Tacquard C, et al. High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection: a Multicenter Prospective Cohort Study. Intensive Care Med. 2020; 46(6): 1089-98. doi: 10.1007/ s00134-020-06062-x.

33. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019 [published online ahead of print 27 March 2020]. J Clin Invest. doi: 10.1172/JCI137244.

34. Robba C, Battaglini D, Pelosi P, Rocco PRM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev Respir Med. 2020; 14(9): 865-868. doi: 10.1080/17476348.2020.1778470.

35. Mercier O, Arthur Ataam J, Langer NB, et al. Abnormal pulmonary endothelial cells may underlie the enigmatic pathogenesis of chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2017; 36(3): 305-314. doi: 10.1016/j.healun.2016.08.012.

36. Mir S, Nazari P, Marosi C, Moik F, et al. Low systemic levels of chemokine C-C motif ligand 3 (CCL3) are associated with a high risk of venous thromboembolism in patients with glioma. Cancers (Basel). 2019; 11(12): 2020. doi: 10.3390/cancers11122020.

37. Li YS, Shyy YJ, Wright JG, et al The expression of monocyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem. 1993; 126(1): 61-68. doi: 10.1007/BF01772208.

38. Lupieri A, Smirnova NF, Solinhac R, et al. Smooth muscle cells-derived CXCL10 prevents endothelial healing through PI3Kgamma-dependent T cells response. Cardiovasc Res. 2020; 116(2): 438-449. doi: 10.1093/cvr/cvz122.

39. Ntanasis-Stathopoulos I, Fotiou D, Terpos E. CCL3 Signaling in the tumor microenvironment. Adv Exp Med Biol. 2020; 1231: 13-21. doi: 10.1007/ 978-3-030-36667-4_2.

40. Brady MP, Chava S, Tandon S, et al. Serum and Urine Interferon Gamma-Induced Protein 10 (IP-10) Levels in Lupus Nephritis. J Clin Med. 2022; 11(11): 3199. doi: 10.3390/jcm11113199.

41. Van den Borne P, Quax PH, Hoefer IE, Pasterkamp G. The multifaceted functions of CXCL10 in cardiovascular disease. Biomed Res Int. 2014; 2014: 893106. doi: 10.1155/2014/893106.

42. Chen Y, Wang J, Liu C, et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020; 26(1): 97. doi: 10.1186/s10020-020-00230-x.

43. Punzalan FER, Aherrera JAM, de Paz-Silava SLM, et al. Utility of laboratory and immune biomarkers in predicting disease progression and mortality among patients with moderate to severe COVID-19 disease at a Philippine tertiary hospital. Front Immunol. 2023; 14: 1123497. doi: 10.3389/ fimmu.2023.1123497.

44. Heriansyah T, Dimiati H, Hadi TF, et al. Ascorbic Acid vs Calcitriol in Influencing Monocyte Chemoattractant Protein-1, Nitric Oxide, Superoxide Dismutase, as Markers of Endothelial Dysfunction: In Vivo Study in Atherosclerosis Rat Model. Vasc Health Risk Manag. 2023; 19: 139-144. doi: 10.2147/VHRM.S401521.

45. Fernandes AL, Murai IH, Reis BZ, et al. Effect of a single high dose of vitamin D3 on cytokines, chemokines, and growth factor in patients with moderate to severe COVID-19. Am J Clin Nutr. 2022; 115(3): 790-798. doi: 10.1093/ajcn/nqab426.

46. Abdeen S, Bdeir K, Abu-Fanne R, et al Alpha-defensins: risk factor for thrombosis in COVID-19 infection. Br J Haematol. 2021; 194(1): 44-52. doi: 10.1111/bjh.17503.

47. Abu-Fanne R, Stepanova V, Litvinov RI, et al Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood. 2019; 133(5): 481-493. doi: 10.1182/blood-2018-07-861237.

48. Mulloy B, Hogwood J, Gray E, et al. Pharmacology of Heparin and Related Drugs. Pharmacol Rev. 2016; 68(1): 76-141. doi: 10.1124/pr.115.011247.

49. Araya S, Mamo MA, Tsegay YG, et al. Blood Coagulation Parameter Abnormalities in Hospitalized Patients with Confirmed COVID-19 in Ethiopia. PLoS One. 2021; 16(6): e0252939. doi: 10.1371/journal.pone.0252939.

For citation

Agapov A.B., Kalinin R.E., Suchkov I.A., Mzhavanadze N.D., Povarov V.O., Nikiforov A.A., Snegur S.V. Laboratory indices of coagulation and inflammation in patients with coronavirus infection. Bulletin of Pirogov National Medical & Surgical Center. 2025;20(1):127-133. (In Russ.) https://doi.org/10.25881/20728255_2025_20_1_127