Authors
Dontsov V.V.1, Zybin D.I.1, Ivanov A.V.2, Popov M.A.1, Agafonov E.G.1, Shumakov D.V.1
1 Moscow Regional Research and Clinical Institute n.a. M.F. Vladimirskiy, Moscow
2 Institute of General Pathology and Pathophysiology, Moscow
Abstract
Coronary heart disease (CHD) is associated with oxidative stress (OS), in which this balance is disrupted, and the production of ROS outweighs their elimination. The oxidative reaction leads to impaired cell function and may increase the likelihood of complications during or after coronary artery bypass surgery (CABG). In pathophysiological conditions associated with OS, there is a general increase in the need for glutathione in antioxidant reactions, conjugation reactions and reduction of protein disulfides. Data on the effect of CABG on plasma aminothiols are incomplete and contradictory.
The plasma pool of aminothiols, on the one hand, has a significant effect on the metabolism of glutathione in the tissues of blood vessels and the heart, and on the other hand, may reflect its disorders. CABG, in turn, can be considered as a procedure that triggers stress and adaptive mechanisms that can have a significant effect on the metabolism of aminothiols. However, to date, data on this effect of CABG are fragmentary. To understand the processes occurring in the aminothiol system in coronary heart disease and CABG, it is important to detect not only shifts in the concentrations of these markers, but also.
Keywords: coronary heart disease, glutathione, homocysteine, coronary bypass surgery.
References
1. World Health Organisation. Cardiovascular diseases 2021. Accessed 26.01.2024. [URL].
2. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40(2): 87-165. doi: 10.1093/eurheartj/ehy394.
3. Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, et al. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel, Switzerland). 2023; 12(6): 1199. doi: 10.3390/ antiox12061199.
4. Bastani A, Rajabi S, Daliran A, et al. Oxidant and antioxidant status in coronary artery disease. Biomed Rep. 2018; 9(4): 327-332. doi: 10.3892/ br.2018.1130.
5. Caussé E, Fournier P, Roncalli J, et al. Serum allantoin and aminothiols as biomarkers of chronic heart failure. Acta Cardiol. 2017; 72(4): 397-403. doi: 10.1080/00015385.2017.1335104.
6. Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. (). Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel, Switzerland). 2021; 10(8), 1220. doi: 10.3390/ antiox10081220.
7. Rookyard AW, Paulech J, Thyssen S, et al. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention. Antioxidants & redox signaling. 2021; 34(1): 11-31. doi: 10.1089/ars.2019.7765.
8. Włodek L. Beneficial and harmful effects of thiols. Polish journal of pharmacology. 2002; 54(3): 215-223.
9. Lu SC, Mato JM. S-adenosylmethionine in liver health, injury, and cancer. Physiological reviews.2012; 92(4): 1515-1542. doi: 10.1152/physrev. 00047.2011.
10. Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. International journal of molecular sciences. 2019; 20(1): 231. doi: 10.3390/ijms20010231.
11. Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clinical cardiology. 2003; 26(12): 563-568. doi: 10.1002/clc.4960261204.
12. Mieyal JJ, Srinivasan V, Starke DW. Glutathionyl specificity of thioltransferases: mechanistic and physiological implications. In: Biothiols in Health and Disease. New York, 1995. Р.305-372.
13. Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annual review of microbiology. 2000; 54: 439-461. doi: 10.1146/annurev.micro.54.1.439.
14. Hider RC, Kong XL. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals. 2011; 24(6): 1179-1187. doi: 10.1007/ s10534-011-9476-8.
15. Lu SC. Glutathione synthesis. Biochimica et biophysica acta. 2013; 1830(5): 3143-3153. doi: 10.1016/j.bbagen.2012.09.008.
16. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults: scientific review. JAMA. 2002; 287(23): 3116-3126. doi: 10.1001/ jama.287.23.3116.
17. Ahmad A, Corban MT, Toya T, et al. Coronary Microvascular Endothelial Dysfunction in Patients With Angina and Nonobstructive Coronary Artery Disease Is Associated With Elevated Serum Homocysteine Levels. Journal of the American Heart Association. 2020; 9(19): e017746. doi: 10.1161/ JAHA.120.017746.
18. Spence JD. Rational Medical Therapy Is the Key to Effective Cardiovascular Disease Prevention. The Canadian journal of cardiology. 2017; 33(5): 626-634. doi: 10.1016/j.cjca.2017.01.003.
19. Matata BM, Sosnowski AW, Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. The Annals of Thoracic Surgery. 2000; 69(3): 785-791. doi: 10.1016/S0003-4975(99)01420-4.
20. Zakkar M, Guida G, Suleiman MS, Angelini GD. Cardiopulmonary bypass and oxidative stress. Oxidative Medicine and Cellular Longevity. 2015; 2015: 8. doi: 10.1155/2015/189863.189863.
21. Kim YM, Kattach H, Ratnatunga C, Pillai R, et al. Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. Journal of the American College of Cardiology. 2008; 51(1): 68-74. doi: 10.1016/j.jacc.2007.07.085.
22. Valerio V, Myasoedova VA, Moschetta D, et al. Impact of Oxidative Stress and Protein S-Glutathionylation in Aortic Valve Sclerosis Patients with Overt Atherosclerosis. J Clin Med. 2019; 8(4): 552. doi: 10.3390/jcm8040552.
23. Varadhan S, Venkatachalam R, Perumal SM, Ayyamkulamkara SS. Evaluation of Oxidative Stress Parameters and Antioxidant Status in Coronary Artery Disease Patients. Arch Razi Inst. 2022; 77(2): 853-859. doi: 10.22092/ARI.2022.357069.1965.
24. Pietruszyński R, Markuszewski L, Masiarek K, et al. Role of preprocedural glutathione concentrations in the prediction of major adverse cardiac events in patients with acute coronary syndrome treated with percutaneous coronary intervention. Pol Arch Med Wewn. 2013; 123(5): 228-37. doi: 10.20452/pamw.1728.
25. Patel RS, Ghasemzadeh N, Eapen DJ, et al. Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease. Circulation. 2016; 133(4): 361-369. doi: 10.1161/CIRCULATIONAHA.115.019790.
26. Cavalca V, Tremoli E, Porro B, et al. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interact Cardiovasc Thorac Surg. 2013; 17(6): 923-30. doi: 10.1093/icvts/ivt386.
27. Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. The Journal of biological chemistry. 2006; 281(24): 16768-16776. doi: 10.1074/jbc.M601876200.
28. Lima A, Ferin R, Fontes A, et al. Cysteine is a better predictor of coronary artery disease than conventional homocysteine in high-risk subjects under preventive medication. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2020; 30(8): 1281-1288. doi: 10.1016/j.numecd.2020.04.010.
29. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990; 1(5): 228-37. doi: 10.1016/0955-2863(90)90070-2.
30. Nandi SS, Mishra PK. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017; 7(1): 3639. doi: 10.1038/s41598-017-03776-9.
31. Yang Q, He GW. Imbalance of Homocysteine and H2S: Significance, Mechanisms, and Therapeutic Promise in Vascular Injury. Oxid Med Cell Longev. 2019; 2019: 7629673. doi: 10.1155/2019/7629673.
32. Zhang, Z., Fang, X., Hua, Y., et al. Combined effect of hyperhomocysteinemia and hypertension on the presence of early carotid artery atherosclerosis. Journal of Stroke and Cerebrovascular Diseases. 2016; 25(5): 1254-1262.
33. Pang X, Liu J, Zhao J, et al. Homocysteine induces the expression of C – reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells.
34. Okura T, Miyoshi K, Irita J, et al. Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males. Nature.com Sci Rep. 2014; 4: 5663.
35. Zhang S, Yong-Yi B, Luo LM, et al. Association between serum homocysteine and arterial stiffness in elderly: a community-based study. J Geriatr Cardiol. 2014; 11: 32-8.
36. Shenov V, Mehendale V, Prabhu K, Shetty R, Rao P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Ind J Clin Biochem. 2014; 29(3): 339-44. doi: 10.1007/s12291-013-0373-5.
37. Basu A, Jenkins AJ, Stoner JA, et al. DCCT/EDIC Research Group.15: plasma total homocysteine and carotid intima-media thickness in type 1 diabetes: a prospective study. Atherosclerosis. 2014; 236: 188-95. doi: 10.1016/j.atherosclerosis.2014.07.001.
38. Xie R, Jia D, Gao C, et al. Homocysteine induces procoagulant activity of red blood cells via phosphatidylserine exposure and microparticles generation. Amino Acids. 2014; 46: 1997-2004. doi: 10.1007/s00726-014-1755-6.
39. Mangge H, Becker K, Fuchs D, Gostner JM. Antioxidants, inflammation and cardiovascular disease. World J Cardiol. 2014; 6(6): 462-77. doi: 10.4330/wjc.v6.i6.462.
40. Baszczuk A, Kopczynski Z. Hyperhomocysteinemia in patients with cardiovascular disease (Abstract) Postepy Hig Med Dosw. 2014; 68: 579. doi: 10.5604/17322693.1102340.
41. Veeranna V, Zalawadiya SK, Niraj A, et al. Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol. 2011; 58: 1025-33. doi: 10.1016/j.jacc.2011.05.028.
42. Ivanov AV, Popov MA, Aleksandrin VV, et al. Determination of glutathione in blood via capillary electrophoresis with ph-mediated stacking. Electrophoresis. 2022; 43(18-19): 1859-1870. doi: 10.1002/Elps.202200119.
43. Jeremy JY, Shukla N, Angelini GD, et al. Sustained increases of plasma homocysteine, copper, and serum ceruloplasmin after coronary artery bypass grafting. Ann Thorac Surg. 2002; 74(5): 1553-7. doi: 10.1016/ s0003-4975(02)03807-9.
44. Li S, Zheng MQ, Rozanski GJ. Glutathione homeostasis in ventricular myocytes from rat hearts with chronic myocardial infarction. Exp Physiol. 2009; 94(7): 815-24. doi: 10.1113/expphysiol.2008.046201.
45. Dogan A, Turker FS. The Effect of On-Pump and Off-Pump Bypass Operations on Oxidative Damage and Antioxidant Parameters. Oxid Med Cell Longev. 2017; 2017: 8271376. doi: 10.1155/2017/8271376.
46. Yildiz D, Ekin S, Sahinalp S. Evaluations of Antioxidant Enzyme Activities, Total Sialic Acid and Trace Element Levels in Coronary Artery Bypass Grafting Patients. Braz J Cardiovasc Surg. 2021; 36(6): 769-779. doi: 10.21470/1678-9741-2020-0162.
47. Ivanov AV, Popov MA, Aleksandrin VV, et al. Simultaneous determination of cystine and other free aminothiols in blood plasma using capillary electrophoresis with pH-mediated stacking. Electrophoresis. 2023: 1-9. doi: 10.1002/elps.202300196.
48. Storti S, Cerillo AG, Rizza A, et al. Coronary artery bypass grafting surgery is associated with a marked reduction in serum homocysteine and folate levels in the early postoperative period. Eur J Cardiothorac Surg. 2004; 26(4): 682-6. doi: 10.1016/j.ejcts.2004.06.001. PMID: 15450557.
49. Kim JS, Kim AH, Jang C, et al. Comparison of the Plasma Metabolome Profiles Between the Internal Thoracic Artery and Ascending Aorta in Patients Undergoing Coronary Artery Bypass Graft Surgery Using Gas Chromatography Time-of-Flight Mass Spectrometry. J Korean Med Sci. 2019; 34(13): e104. doi: 10.3346/jkms.2019.34.e104.