Authors
Kornilovskiy I.M.
Pirogov National Medical and Surgical Center, Moscow
Abstract
Objective: To consider new approaches to crosslinking in combination with refractive keratomodeling in corneal ectasia of various etiologies.
Methods: The work is based on clinical observations of the immediate and remote results of prophylactic and therapeutic corneal crosslinking with argon-fluorine excimer laser radiation (over 700 operations) over periods from 1 month to 13 years. Particular emphasis was placed on the formation of a Bowman-like membrane structure on the ablation surface and local exposure with a personalized gradient refractive profile of the total dose of radiation to achieve a greater keratomodeling effect. Rapid transition without additional calibrations to energy densities below the ablation threshold was carried out on the Russian excimer laser “Microscan Visum-500”.
Results: Experimental and clinical studies have shown that excimer laser radiation on argon-fluorine can be used for corneal crosslinking, with energy densities in the pulse being below the ablation threshold. The advantage of excimer laser crosslinking was scanning with a narrow beam, which disrupts the oxygenation of the corneal stroma to a lesser extent and allows for the implementation of personalized local refractive keratomodeling based on keratotopography or aberrometry data. In this case, the induced secondary radiation covers all four peaks of maximum absorption by riboflavin. The use of subablative energy densities during irradiation of the cornea in the personalized PRK mode made it possible to locally affect the ectasia zone and enhance the refractive effect due to the gradient distribution of the total radiation dose.
Conclusion: Radiation from an argon-fluorine excimer laser opens up new possibilities for refractive ablative and non-ablative refractive keratomodeling of the cornea in combination with laser-induced crosslinking in keratoconus and secondary keratoectasias of various etiologies.
Keywords: cornea, riboflavin, excimer laser, keratoconus, keratoectasias, refractive keratomodeling, laser-induced crosslinking.
References
1. Zhu A.Y., Jun A.S., Soiberman U.S. Combined Protocols for Corneal Collagen CrossLinking with Photorefractive Surgery for Refractive Management of Keratoconus: Update on Techniques and Review of Literature. Ophthalmol. Ther., 2019; 8 (Suppl 1):S15–S3. [URL].
2. Ezzeldin M., Filev F., Steinberg J., Frings A. Excimer laser treatment combined with riboflavinultraviolet-A (UVA) collagen crosslinking (CXL)in keratoconus: a literature review. Int Ophthalmol., 2020;40:2403–2412.
3. Tanrıverdi B, Saraç Ö, Temel B, Dağ Şeker E, Çağıl N. Efficacy and Safety of the Modified Cretan Protocol in Patients with Post-LASIK Ectasia. Turk J Ophthalmol 2024;54:120-126. DOI: 10.4274/tjo.galenos.2024.82342.
4. Kankariya VP, Dube AB, Sonvane S, Grentzelos MA, Kontadakis GA, Diakonis VF, et al. Corneal cross-linking combined with refractive surgery for the comprehensive management of keratoconus: Cross-linking plus. Indian J Cataract Refract Surg 2024;1:23-39. DOI: 10.4103/ICRS.ICRS_23_24.
5. Kornilovskii, I. M. Teoreticheskoe i eksperimental’noe obosnovanie lazer-indutsirovannogo krosslinkinga v fotorefraktsionnoi khirurgii rogovitsy / I. M. Kornilovskii, A. A. Burtsev // Kataraktal’naya i refraktsionnaya khirurgiya. – 2015. – T. 15, № 1. – S. 20-25. (In Russ.)
6. Kornilovskiy I.M., Kasimov E.M., Sultanova A.I., Burtsev A.A., Mirishova M.F. An experimental evaluation of photoprotection by riboflavin in the excimer laser refractive keratectomy. Res. J. Pharm. Biol. Chem. Sci. 2016; 7 (6): 188-194.
7. Kornilovskiy I.M., Kasimov E.M., Sultanova A.I., Burtsev A.A. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin. Clin. Ophthalmol. 2016; 10: 587-592. DOI:10.2147/OPTH.S101632.
8. Kornilovskii I.M., Burtsev A.A., Sultanova A.I., Mirishova M.F., Safarova A.N. Method for photorefractive corneal ablation Patent RF №2578388, prioritet 21.10.2014. (In Russ.)
9. Kornilovskiy IM, Sultanova AI, Burtsev AA. Riboflavin photo¬protection with cross-linking effect in photorefractive ablation of the cornea. Russian Annals of Ophthalmology. 2016;132(3):37 41. (In Russ.)
10. Kornilovskii I.M. Lazer-indutsirovannyi krosslinking v modifikatsii ablyatsionnoi poverkhnosti pri fotorefraktsionnoi keratektomii. Kataraktal’naya i refraktsionnaya khirurgiya. 2016; 16 (4): 29-35. (In Russ.)
11. Kornilovskiy IM, Sultanova AI, Burtsev AA. Riboflavin photo¬protection with cross-linking effect in photorefractive ablation of the cornea. Russian Annals of Ophthalmology. 2016;132(3):37 41. (In Russ.)
12. Kornilovskii I.M. Primenenie indutsirovannogo eksimerlazernoi ablyatsiei vtorichnogo izlucheniya dlya krosslinkinga v refraktsionnoi khirurgii rogovitsy. Kataraktal’naya i refraktsionnaya khirurgiya. 2017; 17 (3): 33-40. (In Russ.)
13. Kornilovskiy I.M. Optical Coherence Tomography and Densitometry in Assessing the Effect of Corneal Cross-Linking Upon Photorefractive Ablation with Riboflavin. Journal of Eye Study and Treatment, 2018; 1:05-13.
14. Kornilovskij I.M., Vartapetov S. K., Movshev V. G., Vedeneev D. S. Novye tekhnologii v hirurgii i terapii rogovicy na osnove primeneniya riboflavina i subablyacionnyh rezhimov izlucheniya eksimernogo lazera «Mikroskan Vizum». Sovremennye tekhnologii v oftal’mologii. 2019; 5: 287–291. DOI: 10.25276/2312-4911-2019-5-287-291. (In Russ.)
15. Kornilovskiy I.M. Photorefractive Keratectomy with Protection from Ablation-Induced Secondary Radiation and Cross-linking Effect. EC Ophthalmology. 2019; 10 (70): 563-570. DOI [URL].
16. Kornilovskiy I.M. Prophylactic and Therapeutic Laser-Induced Corneal Crosslinking. EC Ophthalmology, 2020; 11(12):74-82.
17. Kornilovskiy I.M. From standard to accelerated and ultra-fast topographically oriented preventive cross-linking in refractive corneal surgery. Bulletin of Pirogov National Medical & Surgical Center. 2023;18 (4,supplement):53-58. (In Russ.)
18. Kornilovskii I.M. Method of epithelial removal in photorefractive and phototherapeutic operations on corneaPatent RF № 2718 260 s prioritetom ot 27.12. 2018. (In Russ.)
19. Kornilovskii I.M. Corneal crosslinking method. Patent RF № 2822101 s prioritetom ot 15.12. 2021. (In Russ.)
20. Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea, 2019 38(4):433–441.
21. Brar S, Gautam M, Sute SS, Ganesh S. Refractive surgery with simultaneous collagen cross-linking for borderline corneas – A review of different techniques, their protocols and clinical outcomes. Indian J Ophthalmol 2020;68:2744-56.
22. Kornilovskii I.M., Godzhaeva A.M., Stegailo I.V. Lokal’naya gipotermiya v fotorefraktsionnoi khirurgii. Oftal’mologiya, 2005,2(2):5-12. (In Russ.)
23. Stegailo I.V. Lokal’naya gipotermiya v fotorefraktsionnoi khirurgii rogovitsy. Avt.Disc kand.med.nauk. M.2005., S.24. (In Russ.)
24. Jui-teng Lin The Role of Riboflavin Concentration and Oxygen in the Efficacy and Depth of Corneal Crosslinking. Investigative Ophthalmology & Visual Science September 2018, Vol.59, 4449-4450.
25. Theo G. Seiler; Maria A. Komninou; Malavika H. Nambiar; Kaspar Schuerch; Beatrice E. Frueh; Philippe Büchler. Oxygen kinetics during corneal crosslinking with and without supplementary oxygen. American Journal of Ophthalmology ( IF 4.013 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.ajo. 2020.11.001.