DOI: 10.25881/20728255_2024_19_3_105

Authors

Schevchenko Yu.L., Gudymovich V.G., Trombachev A.E.

St. George thoracic and cardiovascular surgery clinic Pirogov National Medical and Surgical Center, Moscow

Abstract

The modern scientific literature overwhelmingly pays attention to the arterial and, to a lesser extent, the venous link of the myocardial blood supply. However, the lymphatic drainage system from the structures of the heart remains practically unlit. This literature review is devoted to the lymphatic bed of the heart. The historical aspects of his discovery are shown, modern data concerning embryonic development, anatomical structure and function of the lymphatic structures of the heart, and features of lymph outflow from the myocardium are presented. Modern methods of assessing the development, structure and function of the lymphatic structures of the heart based on the use of specific markers of lymphoid structures are demonstrated. Special attention is paid to the possibilities of stimulating the lymphatic system of the heart in order to prevent the development of interstitial fibrosis, as well as heart failure in acute circulatory disorders and inflammatory changes of the myocardium.

Keywords: heart failure, myocardial lymphatic network, interstitial cardiac fibrosis.

References

1. Eberth CJ, Belajeff A. Tiber die Lvmphagefiisse des Herzens. Arch. path. Anat. 1866; 37: 124.

2. Garmy-Susini B, Pizzinat N, Villeneuve N, et al. Le système lymphatique cardiaque. Médecine/Sciences. 2017; 33(8-9): 765-770.

3. Miller AJ, Ruth P, Lopis NK. Lymphatics of the mitral valve of the dog: demonstration and discussion of the possible significance. Circulation research. 1961; 9(5): 1005-1009.

4. Huang LH, Lavine KJ, Randolph GJ. Cardiac Lymphatic Vessels, Transport, and Healing of the Infarcted Heart. JACC Basic Transl Sci. 2017; 2(4): 477-483. doi: 10.1016/j.jacbts.2017.02.005.

5. Juszyński M, Ciszek B, Stachurska E. et al. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev Dyn. 2008; 237(10): 2973-86. doi: 10.1002/dvdy.21693.

6. Ratajska A, Gula G, Flaht-Zabost A, et al. Comparative and Developmental Anatomy of Cardiac Lymphatics. Scientific World Journal. 2014; 9. doi: 10.1155/2014/183170.

7. Fedyai VV. Age changes in the intrinsic lymphatics of the heart. Fed Proc Transl Suppl. 1966; 25(1): 177-80.

8. Harris NR, Bálint L, Dy DM, et al. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev. 2023; 103(1): 391-432. doi: 10.1152/physrev.00052.2021.

9. Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015; 522(7554): 62-7. doi: 10.1038/nature14483.

10. Rauniyar K, Jha SK, Jeltsch M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front Bioeng Biotechnol. 2018; 6: 7. doi: 10.3389/fbioe.2018.00007.

11. Borodin YuI. Lymphatic drainage of the heart. Morpho-functional aspect. Vestnik lymphologii. 2013; 4: 4. (In Russ.)

12. Patek PR. The morphology of the lymphatics of the mammalian heart. American Journal of Anatomy. 1966; 64(10): 203-249, 1939.

13. Kubik S. Anatomy of the lymphatic system. Textbook of Lymphology. 2003; 2: 166.

14. Sacchi G, Weber E, Agliano M, Cavina NL. Comparing Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. Journal of Submicroscopic Cytology and Pathology. 1999; 31(4): 515-525.

15. Cui Y, Urschel JD, Petrelli NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg. 2001; 49(1): 35-40. doi: 10.1055/s-2001-9917.

16. Johnson RA, Blake TM. Lymphatics of the heart. Circulation. 1966; 33(1): 137-142.

17. Shore LR. The Lymphatic Drainage of the Human Heart. J Anat. 1929; 63(3): 291-313.

18. Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res. 2010; 87(2): 331-9. doi: 10.1093/cvr/cvq145.

19. Santos AC, de Lima JJ, Botelho MF, Pacheco MF, et al. Cardiac lymphatic dynamics after ischemia and reperfusion-experimental model. Nucl Med Biol. 1998; 25(7): 685-8. doi: 10.1016/s0969-8051(98)00037-7.

20. Laine GA, Allen SJ. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res. 1991; 68(6): 1713-21. doi: 10.1161/01.res.68.6.1713. PMID: 2036720.

21. Kong D, Kong X, Wang L. Effect of cardiac lymph flow obstruction on cardiac collagen synthesis and interstitial fibrosis. Physiol Res. 2006; 55(3): 253-258. doi: 10.33549/physiolres.930727.

22. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012; 125(13): 1652-63. doi: 10.1161/CIRCULATIONAHA.111.044164.

23. Shevchenko YL. Immobilizing interstitial fibrosis of the heart. Novoe v fundamental’noj i klinicheskoj medicine. M.: Izd-vo NMHC im. N.I.Pirogova, 2022: 46-95. (In Russ.)

24. Gulmagomedova MV. The lymphatic bed of the heart in diabetes mellitus (analytical review of literature data). Vestnik Novgorodskogo gosudarstvennogo universiteta, 2016; 97(6): 139-143. (In Russ.)

25. Wu L, Ong S, Talor MV, et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J Exp Med. 2014; 211: 1449-1464. doi: 10.1084/jem.20132126.

26. Korneva YuS, Ukrainets RV. The importance of the lymphatic system of the heart in the development and progression of heart failure and new therapeutic approaches to its correction in postinfarction remodeling. Kardiovaskulyarnaya terapiya i profilaktika. 2020; 19(3): 2281. (In Russ.) doi: 10.15829/1728-8800- 2020-2281.

27. Henri O, Pouehe C, Houssari M. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation. 2016; 133: 1484-1497.

28. Mahmoodzadeh S, Leber J, Zhang X, Jaisser F, et al. Cardiomyocyte-specific Estrogen Receptor Alpha Increases Angiogenesis, Lymphangiogenesis and Reduces Fibrosis in the Female Mouse Heart Post-Myocardial Infarction. J Cell Sci Ther. 2014; 5(1): 153. doi: 10.4172/2157-7013. 1000153.

29. Yotsumoto G, Moriyama Y, Yamaoka A, et al. Experimental study of cardiac lymph dynamics and edema formation in ischemia/reperfusion injury--with reference to the effect of hyaluronidase. Angiology. 1998; 49(4): 299-305. doi: 10.1177/000331979804900408.

30. Szuba A, Skobe M, Karkkainen MJ. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 2002; 16: 19851987.

For citation

Schevchenko Yu.L., Gudymovich V.G., Trombachev A.E. Modern view of the lymphatic system of the heart and the effect of its pathology on myocardial function. Bulletin of Pirogov National Medical & Surgical Center. 2024;19(3):105-111. (In Russ.) https://doi.org/10.25881/20728255_2024_19_3_105