DOI: 10.25881/20728255_2024_19_2_123

Authors

Davydov D.V.1, Kerimov A.A.1, Besedin V.D.1, Pimanchev O.V.2, Zemlyanoj A.B.3

1 Chief military clinical hospital named after academic N.N. Burdenko, Moscow

2 Pirogov National Medical and Surgical Center, Moscow

3 Russian Biotechnological University (ROSBIOTECH), Moscow

Abstract

In recent years, much attention has been paid to the treatment of wounds of various etiologies. In the modern world, we are faced with an increasing number of gunshot wounds (up to 68% in the structure of modern combat surgical injuries), with the largest percentage (53%) being limb injuries. Against the background of massive tissue destruction and large blood loss, high risk of general and local infectious complications, primary surgical treatment becomes the key point of treatment. Compliance with the correctness of all its stages (dissection of the wound, removal of foreign bodies, excision of non-viable tissues, wound drainage, wound closure) allows you to prevent the development of complications and create favorable conditions for wound healing. But often in our work, after cleansing the wound, we are faced with the problem of the duration of wound healing and lengthening of all phases of the wound process. One of the available and effective methods that stimulate the reparative process, in our opinion, is laser therapy. In this review article, we reviewed the literature on the mechanisms of biological action and the use of laser technologies in the treatment of wounds of various etiologies, including gunshot wounds.

Keywords: gunshot wound, laser, laser therapy, wounds.

References

1. Trishkin DV, Kryukov EV, Chuprina AP, et al. Methodological recommendations for the treatment of combat surgical trauma. M., 2022. 373 p. (In Russ.)

2. Brizhan LK, Davydov DV, Khominets VV, Kerimov AA, Arbuzov YuV, Chirva YuV, Pykhtin IV. Modern complex treatment of wounded and injured with combat injuries of limbs // Bulletin of the National Medical and Surgical Center named after N.I. Pirogov. 2016; 1. (In Russ.)

3. Military field surgery: textbook / I.M. Samokhvalov, editor. St. Petersburg: VMedA, 2021. 494 p. (In Russ.)

4. Laser medical systems and medical technologies based on them: Textbook / V.P. Minaev — 4th, revised and expanded edition. Dolgoprudny: Intellect, 2020. 360 p. (In Russ.)

5. Karu T. Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B. 1989; 3(4): 638-640. doi:10.1016/1011-1344(89)80088-0.

6. Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol. 2003; 30(4): 353-358. doi: 10.1034/j.1600-051x.2003.00001.x.

7. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005; 31(3): 334-340. doi: 10.1111/j.1524-4725.2005.31086.

8. Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol. 2019; 95(2): 120-143. doi: 10.1080/09553002.2019.1524944.

9. Moskvin SV. Fundamentals of laser therapy. Vol.1. M. — Tver: Triada, 2016. 896 p. (In Russ.)

10. Nair HKR, Chong SSY, Selvaraj DDJ. Photobiomodulation as an Adjunct Therapy in Wound Healing. Int J Low Extrem Wounds. 2023; 22(2): 278-282. doi: 10.1177/15347346211004186.

11. Lucas C, Criens-Poublon LJ, Cockrell CT, de Haan RJ. Wound healing in cell studies and animal model experiments by Low Level Laser Therapy; were clinical studies justified? a systematic review. Lasers Med Sci. 2002; 17(2): 110-134. doi: 10.1007/s101030200018.

12. King PR. Low level laser therapy: A review. Laser Med Sci. 1989; 4: 141-150. doi: 10.1007/BF02032427.

13. Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci. 2012; 27(2): 509-519. doi: 10.1007/s10103-011-0995-x.

14. Schindl A, Schindl M, Pernerstorfer-Schön H, Schindl L. Low-intensity laser therapy: a review. J Investig Med. 2000; 48(5): 312-326.

15. Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013; 32(1): 41-52.

16. Tuner J, Hode L. Laser Therapy: Clinical Practice and Scientific Background: a Guide for Research Scientists, Doctors, Dentists, Veterinarians and Other Interested Parties Within the Medical Field. 2002. 591 р.

17. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother. 2003; 49(2): 107-116. doi: 10.1016/s0004-9514(14)60127-6.

18. Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve. 2005; 31(6): 694-701. doi: 10.1002/mus.20305.

19. King PR. Low level laser therapy: A review. Lasers in Medical Science. 1989; 4(3): 141-150. doi: 10.1007/bf02032427.

20. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009; 7(4): 358-383. doi: 10.2203/dose-response.09-027.Hamblin.

21. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012; 27(1): 237-249. doi: 10.1007/s10103-011-0885-2.

22. Di Giacomo P, Orlando S, Dell’ariccia M, Brandimarte B. Low level laser therapy: laser radiation absorption in biological tissues. Appl Phys A. 2013; 112: 71-75. doi: 10.1007/s00339-012-7204-z.

23. Ng EY, Ooi EH. Ocular surface temperature: a 3D FEM prediction using bioheat equation. Comput Biol Med. 2007; 37(6): 829-835. doi: 10.1016/j.compbiomed.2006.08.023.

24. Cvetkovic M, Peratta A, Poljak D. Thermal modelling of the human eye exposed to infrared radiation of 1064 Nm Nd:YAG And 2090 Nm Ho:YAG lasers. Environ. Health Risk. 2009; 14: 221-231. doi: 10.2495/EHR090221.

25. Mirnezami SA, Rajaei Jafarabadi M, Abrishami M. Temperature distribution simulation of the human eye exposed to laser radiation. J Lasers Med Sci. 2013; 4(4): 175-181.

26. Rohringer S, Holnthoner W, Chaudary S, et al. The impact of wavelengths of LED light-therapy on endothelial cells. Sci Rep. 2017; 7(1): 10700. doi: 10.1038/s41598-017-11061-y.

27. Jordal JM, Couppe C, Ljunggren AE. Low level laser therapy for tendinopathy: evidence of a dose-response pattern. Physical Therapy Reviews 2001; 6: 91-99. doi: 10.1179/108331901786166569.

28. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012; 40(2): 516-533. doi: 10.1007/s10439-011-0454-7.

29. Husain Z, Alster TS. The role of lasers and intense pulsed light technology in dermatology. Clin Cosmet Investig Dermatol. 2016; 9: 29-40. doi: 10.2147/CCID.S69106.

30. Pustisek N, Situm M. UV-radiation, apoptosis and skin. Coll Antropol. 2011; 35(2): 339-341.

31. Zorina A, Zorin V, Kudlay D, Kopnin P. Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci. 2022; 23(12): 6655. doi: 10.3390/ijms23126655.

32. Poddubnaya O.A. Low-intensity laser therapy in clinical practice (Part №1). Bulletin of Restorative Medicine. 2020; 6(100). (In Russ.) doi: 10.38025/2078-1962-2020-100-6-92-99.

33. Sella VR, do Bomfim FR, Machado PC, da Silva Morsoleto MJ, Chohfi M, Plapler H. Effect of low-level laser therapy on bone repair: a randomized controlled experimental study. Lasers Med Sci. 2015; 30(3): 1061-1068. doi: 10.1007/s10103-015-1710-0.

34. Bayat M, Jalalifirouzkouhi A. Presenting a Method to Improve Bone Quality Through Stimulation of Osteoporotic Mesenchymal Stem Cells by Low-Level Laser Therapy. Photomed Laser Surg. 2017; 35(11): 622-628. doi: 10.1089/pho.2016.4245.

35. Bayat M, Virdi A, Jalalifirouzkouhi R, Rezaei F. Comparison of effects of LLLT and LIPUS on fracture healing in animal models and patients: A systematic review. Prog Biophys Mol Biol. 2018; 132: 3-22. doi: 10.1016/j. pbiomolbio.2017.07.004.

36. Kaub L, Schmitz C. More than ninety percent of the light energy emitted by near-infrared laser therapy devices used to treat musculoskeletal disorders is absorbed withinthe first ten millimeters of biological tissue. Biomedicines. 2022; 10(12): 3204. doi: 10.3390/biomedicines10123204.

37. Son J, Kim YB, Ge Z, Choi SH, Kim G. Bone healing effects of diode laser (808 nm) on a rat tibial fracture model. In Vivo. 2012; 26(4): 703-709.

38. Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, García-Martínez O. Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs. 2014; 16(2): 191-196.
doi: 10.1177/1099800413482695.

39. Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E, Ramos-Torrecillas J, García-Martínez O, Ruiz C. The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci. 2014; 29(4): 1479-1484. doi: 10.1007/s10103-014-1557-9.

40. Stein E, Koehn J, Sutter W, et al. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr. 2008; 120(3-4): 112-117. doi:10.1007/s00508-008-0932-6.

41. Cios A, Cieplak M, Szymański Ł, et al. Effect of Different Wavelengths of Laser Irradiation on the Skin Cells. Int J Mol Sci. 2021; 22(5): 2437. doi: 10.3390/ijms22052437.

42. Ceballos A, Balmaseda R, Puente R, Pedroso M. CO2 laser surgery in osteomyelitis. J Clin Laser Med Surg. 1997; 15(5): 221-223. doi: 10.1089/clm.1997.15.221.

43. Prokopova LV, Nikolaeva NG, Maliarchuk NK. The use of the CO2 laser in the combined treatment of chronic osteomyelitis in children. Klin Khir. 1993; 2: 46-48.

44. Klepper KL, Chun YP, Cochran D, Chen S, McGuff HS, Mealey BL. Impact of Er: YAG laser on wound healing following nonsurgical therapy: A pilot study. Clin Exp Dent Res. 2019; 5(3): 250-258. doi: 10.1002/ cre2.179.

45. Krochek IV, Sergiyko SV, Privalov VA. Laser osteoperforation in the treatment of acute hematogenous osteomyelitis. 10 years of experience. Pediatrician. 2013; 4. (In Russ.)

46. Drobyshev AYu Tarasenko SV, Hemonov VV. Investigation of the regeneration of stagnant tissue after laser and mechanical action. Cathedra. 2000; 2: 53-55. (In Russ.)

47. Khudyakov IS. Laser osteoperforation in the treatment of Osgood-Schlatter disease. Bulletin of SMUS74. 2016; 4(15). (In Russ.)

48. Bayat M, Azari A, Golmohammadi MG. Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg. 2010; 28(4): 465-470. doi: 10.1089/pho.2008.2450.

49. Koutna M, Janisch R, Unucka M, Svobodnik A, Mornstein V. Effects of low-power laser irradiation on cell locomotion in protozoa. Photochem Photobiol. 2004; 80(3): 531-534. doi: 10.1562/0031-8655(2004) 080.

50. Isakhanova NV, Rogov LA. Clinical efficacy of magnetic laser therapy of gunshot wounds. Vyatka Medical Bulletin. 2003. (In Russ.)

For citation

Davydov D.V., Kerimov A.A., Besedin V.D., Pimanchev O.V., Zemlyanoj A.B. Prospects for the use of laser therapy in the treatment of gunshot wounds of extremities. Bulletin of Pirogov National Medical & Surgical Center. 2024;19(2):123-127. (In Russ.) https://doi.org/10.25881/20728255_2024_19_2_123