DOI: 10.25881/20728255_2022_17_3_84

Authors

Shevchenko Yu.L., Plotnitsky A.V., Sudilovskaya V.V., Dubova E.A., Ulbashev D.S.

Pirogov National Medical and Surgical Center, Moscow

Abstract

The fibrosis is the most important component of restoring the integrity of tissues and organs after their damage. In the heart, this is a fundamental stage in the process of its remodeling and, at the same time, the central link in the development and progression of chronic circulatory insufficiency.

It is known that the main cause of heart failure is cardiomyocyte dysfunction, primarily as a result of coronary heart disease. However, patients often occur without obvious signs of myocardial damage proper. Our long-term clinical practice, numerous scientific and experimental studies allowed us to suggest that the cause of this phenomenon is a mechanical factor located outside the myocardial bundles of healthy cardiomyocytes, but structurally closely related to them — the interstitial connective tissue with altered physical properties. This phenomenon is called the immobilizing interstitial fibrosis of the heart.

Objective: to study the morphology of connective tissue and the expression of various fibrogenic markers in immobilizing interstitial fibrosis of the heart.

Materials and methods. The study was performed on the basis of the pathoanatomical department of the N.I. Pirogov NMHC. Group I (n = 30) — patients with immobilizing interstitial fibrosis of the heart, whose cause of death was heart failure. II (n = 10) is a comparison group (without diseases of the cardiovascular system). Age of patients: 68±6.5 years (group I), 29±5.1 years (group II). Heart weight: 486±141 g (group I), 322±32 g (group II). Histological sections were stained with hematoxylin and eosin, according to Van Gieson, Weigert and Masson (trichrome method). An immunohistochemical analysis was performed.

Results. Statistical differences in the area of the common fibrosis zone were revealed between the groups: 13.7±7.4% (group I), 5.6±4.2% (group II), p = 0.001; MMP-9 expression: 14691±5256 in 1 mm2 (group I), 7116±2831 in 1 mm2 (group II), p = 0.0001. Tenascin-C was determined in patients with the initial stage of the interstitial fibrosis. In the comparison group, the expression of tenascin-C and Bcl-2 was not detected. The studied groups differed in the amount of detected connexin-43: 24724±14764 in 1 mm2 (group I), 38228±13548 in 1 mm2 (group II), p = 0.02; fibronectin: 3354±719 in 1 mm2 (group I), 1635±557 in 1 mm2 (group II), (p = 0.00003). Significant differences between the groups in the volume of collagen fibers of type I were revealed: 4673±1292 in 1 mm2 (group I), 2269±887 in 1 mm2 (group II), p = 0.0001; type III: 6959±1385 in 1 mm2 (group I), 2566±568 in 1 mm2 (II group), p = 0.00001.

Conclusion. Deciphering the molecular and structural foundations of myocardial rearrangement in fibrosis is the key to understanding the pathogenetic foundations of the development of heart failure. The immobilizing interstitial fibrosis of the heart is based on the process of changing the connective tissue framework, leading to an increase in its density, limiting the function of cardiomyocytes. Immunohistochemical examination and determination of markers of fibrous rearrangement of the heart can improve the diagnosis at the early stages of the development of the disease and prevent its progression.

Keywords: immobilization, interstitial fibrosis of the heart, markers, heart failure.

References

1. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011; 8(1): 30–41. doi: 10.1038/nrcardio.2010.165.

2. Giamouzis G, Triposkiadis F, Butler J, et al. Heart failure. Cardiol Res Pract. 2011; 2011: 159608. doi:10.4061/2011/159608.

3. Shevchenko YuL. The immobilizing interstitial fibrosis of the heart. Vestnik NMHC im. N.I. Pirogova. 2022; 17(2): 4–10. (In Russ). doi:10.25881/20728255_2022_17_2_4.

4. Świerblewska E, Wolf J, Kunicka K, et al. Prevalence and distribution of left ventricular diastolic dysfunction in treated patients with long-lasting hypertension. Blood Press. 2018; 27(6): 376-384. doi: 10.1080/08037051.2018.1484661.

5. Jens van de Wouw J, Broekhuizen M, Sorop O, et al. Chronic Kidney Disease as a Risk Factor for Heart Failure With Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic Targets. Front Physiol. 2019; 10: 1108. doi: 10.3389/fphys.2019.01108.

6. Riet EE, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016; 18(3): 242-52. doi: 10.1002/ejhf.483.

7. Mocan M, Mocan Hognogi LD, Anton FP, et al. Biomarkers of Inflammation in Left Ventricular Diastolic Dysfunction. Dis Markers. 2019; 2019: 7583690. doi: 10.1155/2019/7583690.

8. De Boer RA, De Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail. 2019; 21(3): 272-285. doi: 10.1002/ejhf.1406.

9. Suthahar N, Meijers WC, Silljé HHW, de Boer RA. From Inflammation to Fibrosis-Molecular and Cellular Mechanisms of Myocardial Tissue Remodelling and Perspectives on Differential Treatment Opportunities. Curr Heart Fail Rep. 2017; 14(4): 235-250. doi: 10.1007/s11897-017-0343-y.

10. Legere SA, Haidl ID, Légaré JF, Marshall JS. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front Immunol. 2019; 10: 580. doi: 10.3389/fimmu.2019.00580.

11. Nevers T, Salvador AM, Velazquez F, et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med. 2017; 214(11): 3311-3329. doi: 10.1084/jem.20161791.

12. Piek A, de Boer RA, Silljé HH. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016; 21(2): 199-211. doi: 10.1007/s10741-016-9536-9.

13. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5):1600-1612. doi: 10.1172/ JCI87491.

14. Huet E, Gabison E, Vallee B, et al. Deletion of extracellular matrix metalloproteinase inducer/CD147 induces altered cardiac extracellular matrix remodeling in aging mice. J Physiol Pharmacol. 2015; 66(3): 355-66.

15. Chiao YA, Dai Q, Zhang J, et al. Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging. Circ Cardiovasc Genet. 2011; 4(4): 455-62. doi: 10.1161/CIRCGENETICS.111.959981.

16. Meschiari CA, Ero OK, Pan H, et al. The impact of aging on cardiac extracellular matrix. Geroscience. 2017; 39(1): 7-18. doi: 10.1007/s11357-017-9959-9.

17. Antonov IB, Kozlov KL, Pal’tseva EM, et al. Matrix Metalloproteinases MMP-1 and MMP-9 and Their Inhibitor TIMP-1 as Markers of Dilated Cardiomyopathy in Patients of Different Age. Bull Exp Biol Med. 2018; 164(4): 550-553. doi: 10.1007/s10517-018-4030-0.

18. Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009; 11(2): 191-7. doi: 10.1093/eurjhf/hfn036.

19. Wang JH, Su F, Wang S, et al. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP-9 pathway. Int J Clin Exp Pathol. 2014; 7(10): 6514-23.

20. Gutstein DE, Liu FY, Meyers MB, Choo A, Fishman GI. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J Cell Sci. 2003; 116(Pt5): 875-85. doi: 10.1242/jcs.00258.

21. Duffy HS, Fort AG, Spray DC. Cardiac connexins: genes to nexus. Adv Cardiol. 2006; 42: 1-17. doi: 10.1159/000092550.

22. Solan JL, Lampe PD. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta. 2005; 1711(2): 154-63. doi: 10.1016/j.bbamem.2004.09.013.

23. Lampe PD, Cooper CD, King TJ, Burt JM. Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J. Cell Sci. 2006; 119: 3435–3442.

24. Kostin S, Dammer S, Hein S, et al. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 2004; 62(2): 426-36. doi: 10.1016/j.cardiores.2003.12.010.

25. Boengler K, Schulz R. Connexin 43 and Mitochondria in Cardiovascular Health and Disease. Adv Exp Med Biol. 2017; 982: 227-246. doi: 10.1007/978-3-319-55330-6_12.

26. Kostin S, Rieger M, Dammer S, et al. Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem. 2003; 242(1-2): 135-44.

27. Fannin J, Rice KM, Thulluri S, et al. Age-associated alterations of cardiac structure and function in the female F344xBN rat heart. Age (Dordr). 2014; 36(4): 9684. doi: 10.1007/s11357-014-9684-6.

28. Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol. 2014; 92(7): 583-91. doi: 10.1139/cjpp-2014-0060.

29. Ai X, Zhao W, Pogwizd SM. Connexin43 knockdown or overexpression modulates cell coupling in control and failing rabbit left ventricular myocytes. Cardiovasc Res. 2010; 85(4): 751-62. doi: 10.1093/cvr/cvp353.

30. dos Santos DO, Blefari V, Prado FP, et al. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats. Exp Mol Pathol. 2016; 100(1): 167-76. doi: 10.1016/j.yexmp.2015.12.009.

31. Dupont E, Matsushita T, Kaba RA, et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol. 2001; 33(2): 359-71. doi: 10.1006/jmcc.2000.1308.

32. Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002; 54(2): 361-79. doi: 10.1016/ s0008-6363(02)00273-0.

33. Lousinha A, Pereira G, Borrecho G, et al. Atrial fibrosis and decreased connexin 43 in rat hearts after exposure to high-intensity infrasound. Exp Mol Pathol. 2020; 114: 104409. doi: 10.1016/j.yexmp.2020.104409.

34. Baum JR, Long B, Cabo C, Duffy HS. Myofibroblasts cause heterogeneous Cx43 reduction and are unlikely to be coupled to myocytes in the healing canine infarct. Am J Physiol Heart Circ Physiol. 2012; 302(3): H790-800. doi: 10.1152/ajpheart.00498.2011.

35. Nagao K, Inada T, Tamura A, et al. Circulating markers of collagen types I, III, and IV in patients with dilated cardiomyopathy: relationships with myocardial collagen expression. ESC Heart Fail. 2018; 5(6): 1044-1051. doi: 10.1002/ehf2.12360.

36. Weber KT, Janicki JS, Shroff SG, et al. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988; 62(4): 757-65. doi: 10.1161/01.res.62.4.757.

37. Suthahar N, Meijers WC, Silljé HHW, de Boer RA. From Inflammation to Fibrosis-Molecular and Cellular Mechanisms of Myocardial Tissue Remodelling and Perspectives on Differential Treatment Opportunities. Curr Heart Fail Rep. 2017; 14(4): 235-250. doi: 10.1007/s11897-017-0343-y.

38. Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013; 10(1): 15-26. doi: 10.1038/nrcardio.2012.158.

39. Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol. 2008; 28(12): 2108-14. doi: 10.1161/ATVBAHA.108.173898.

40. Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001; 122(10): 1049-58. doi: 10.1016/s0047-6374(01)00238-x.

41. Mendes AB, Ferro M, Rodrigues B, et al. Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly. Medicina (B Aires). 2012; 72(3): 216-20.

42. Meschiari CA, Pinheiro LC, Guimaraes DA, et al. Sodium nitrite attenuates MMP-9 production by endothelial cells and may explain similar effects of atorvastatin. Naunyn Schmiedebergs Arch Pharmacol. 2016; 389(2): 223-31. doi: 10.1007/s00210-015-1192-4.

43. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014; 802: 31-47. doi: 10.1007/978-94-007-7893-1_3.

44. Nattel S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin Electrophysiol. 2017; 3(5): 425-435. doi: 10.1016/j.jacep.2017.03.002.

45. Cojan-Minzat BO, Zlibut A, Agoston-Coldea L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis. Heart Fail Rev. 2020. doi: 10.1007/ s10741-020-09940-0.

46. Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci. 2018; 14(12): 1645-1657. doi: 10.7150/ijbs.28103.

47. Pedram A, Razandi M, Narayanan R, Levin ER. Estrogen receptor beta signals to inhibition of cardiac fibrosis. Mol Cell Endocrinol. 2016; 434: 57-68. doi: 10.1016/j.mce.2016.06.018.

48. Medzikovic L, Aryan L, Eghbali M.J Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. Mol Med (Berl). 2019; 97 (10): 1385-1398. doi: 10.1007/s00109-019-01833-6.

49. Chatzifrangkeskou M, Le Dour C, Wu W, et al. ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Hum Mol Genet. 2016; 25(11): 2220-2233. doi: 10.1093/hmg/ddw090.

50. Levick SP, Widiapradja A. Mast Cells: Key Contributors to Cardiac Fibrosis. Int J Mol Sci. 2018; 19(1): 231. doi: 10.3390/ijms19010231.

51. Gong D, Shi W, Yi SJ, et al. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012; 13: 31. doi: 10.1186/1471-2172-13-31.

52. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014; 71(4): 549-74. doi: 10.1007/s00018-013-1349-6.

For citation

Shevchenko Yu.L., Plotnitsky A.V., Sudilovskaya V.V., Dubova E.A., Ulbashev D.S. The morphology and markers of the immobilizing interstitial fibrosis of the heart. Bulletin of Pirogov National Medical & Surgical Center. 2022;17(3):84-93. (In Russ.) https://doi.org/10.25881/20728255_2022_17_3_84