DOI: 10.25881/20728255_2022_17_3_11

Authors

Shevchenko Yu.L., Lychkova A.E., Ulbashev D.S.

Pirogov National Medical and Surgical Center, Moscow

Abstract

Despite modern knowledge about the physiology of the heart, the processes of regulation of the contractile function of the myocardium in conditions of rest, physical activity and stress remain completely unexplored. The complex effect of the sympathetic and parasympathetic nervous system on the myocardium, the connection of various numerous intra- and extracardial regulatory mechanisms contributes to the possibility of alternately reducing individual associations of cardiomyocytes, which provides energetically more beneficial heart function. The study of the regulation of cardiac activity may be associated with the use of methods based on the measurement of tissue impedance, which are now widely used in various biomedical research.

Objective: to determine fluctuations in the electrical resistance of various zones of the myocardium in a state of functional rest and during stimulation of the parasympathetic and sympathetic parts of the nervous system.

Materials and methods. Chinchilla rabbits (n = 24) underwent dissection of the right and left vagus nerves, stellate ganglion. Electrodes were installed subepicardially in the myocardium of the anterior wall of the left ventricle to register the myocardial impedance. The arterial pressure in the carotid artery was measured invasively throughout the experiment. The increased load on the myocardium was created by irritation of the right stellate ganglion with current pulses of 3–7 mV, 2 ms; of the right vagus nerve — 1.5–5 mV, 2 ms.

Results. A statistically significant difference was revealed between three myocardial clusters with resistance fluctuations of high amplitude (8.0–11.0), medium (3.0–8.0) and low (less than 3.0), (p<0.05). In successive experiments, zones with different electrical resistance and alternating impedance fluctuations between these sections were determined. When the stellate ganglion was stimulated, the principle of shift change was lost — resistance increased in all clusters; when the vagus nerve was stimulated, the heart rate decreased from 150 ±11.3 to 134±10.3 in 1 min (p<0.05), while the systolic blood pressure decreased slightly from 72±5.5 to 70.5±5.1 mmHg; diastolic blood pressure with 51±6.0 to 47±5.4 mmHg. There was an asymmetric increase in the amplitude of the impedance waves in the I and II leads, a decrease in resistance in the III lead. With prolonged stimulation, there was a significant decrease in systolic blood pressure from 72±5.5 to 50.1±5.0 mmHg (p<0.05); diastolic blood pressure from 51±6.0 to 35.9±4.5 mmHg (p<0.05); heart rate from 150±11.3 to 85±7.4 in 1 min (p<0.05).

Conclusion. Based on the experimental data obtained, a conclusion was made about the simultaneous existence in the myocardium of three clusters of cardiomyocytes with alternating resistance fluctuations: high, medium and low.

Keywords: physiology of the heart, myocardial clusters, alternating principle of contraction, sympathetic and parasympathetic nervous system, cardiomyocytes.

References

1. Smirnov VM. Fiziologiya cheloveka. M.: Medicina, 2002. (In Russ).

2. Kosickij GI, Chervova IA. Serdce kak samoreguliruyushchayasya sistema. (Intramural’naya nervnaya sistema i ee rol’ v regulyacii funkcii serdca). — M.: Medicina, 1968. (In Russ).

3. Zefirov TL, Ziyatdinova NI, Hisamieva LI, Zefirov AL. Sravnitel’nyj analiz vliyaniya blokady al- i a2- adrenoreceptorov na serdechnuyu deyatel’nost’ krys v postnatal’nom ontogeneze. Byulleten’ eksperimental’noj biologii i mediciny. 2011; 151(6): 607-610. (In Russ).

4. Shvalev VN, Sosunov AA, Guski G. Morfologicheskie osnovy innervacii serdca. M.: Nauka, 1992. (In Russ).

5. Kosickij GI. Afferentnye sistemy serdca. M.: Nauka, 1975. (In Russ.)

6. Lychkova AE. Vliyanie serotoninergicheskoj i holinergicheskoj nervnyh sistem i ih mediatorov na deyatel’nost’ serdca i motornuyu aktivnost’ gladkomyshechnyh organov malogo taza. Byull. eksper. boil. i med. 2004; 138(10): 368-372. (In Russ).

7. Lychkova AE. Serotoninergicheskaya nervnaya sistema: gradienty nervnyh vliyanij v norme i patologii. Eksper. klin. gastroenterol. 2003; 6: 114-120. (In Russ).

8. Lychkova AE, Smirnov VM. Mekhanizmy sinergizma simpaticheskoj i parasimpaticheskoj nervnoj sistemy v regulyacii deyatel’nosti serdca i zheludka. Vestnik RAMN. 2002; (4): 16-20. (In Russ).

9. Shevchenko YuL, Bobrov LL, Obrezan AG. Diastolicheskaya funkciya levogo zheludochka. M.: GEOTAR-Media, 2002. (In Russ).

10. Shevchenko YuL. Mediko-biologicheskie i fiziologicheskie osnovy kletochnyh tekhnologij v serdechno-sosudistoj hirurgii. Sankt-Peterburg: Nauka, 2006. (In Russ).

11. Klein HU, Ferrari GM. Vagus nerve stimulation: A new approach to reduce heart failure. Cardiol J. 2010; 17(6): 638-44.

12. Zandstra TE, Notenboom RGE, Wink J, et al. Asymmetry and Heterogeneity: Part and Parcel in Cardiac Autonomic Innervation and Function. Front Physiol. 2021; 12: 665298. doi: 10.3389/fphys.2021.665298.

13. Page PL, Dandal N, Cardinal R, Nadeau R. Comparison of the infution of acetylcholine into the artry of the sinoatrial node with the elactric stimulation of cardiac parasympathetic nerves. Ann. Chir. 1995; 49(8): 719-727.

14. Yamakawa K, So EL, Rajendran PS, et al. Electrophysiological effects of right and left vagal nerve stimulation on the ventricular myocardium. Am J Physiol Heart Circ Physiol. 2014; 307(5): H722-31. doi: 10.1152/ajpheart.00279.2014.

15. Coote JH, Chauhan RA. The sympathetic innervation of the heart: Important new insights. Auton Neurosci. 2016; 199: 17-23. doi: 10.1016/ j.autneu.2016.08.014.

16. Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 2021; 82(3-4): 193-197. doi: 10.1016/j.ando.2020.03.012.

17. Goldstein RS, Kalcheim C. Normal segmentation and size of the primary sympathetic ganglia depend upon the alternation of rostrocaudal properties of the somites. Development. 1991; 112(1): 327-34. doi: 10.1242/ dev. 112.1.327.

18. Smith PG, Warn JD, Steinle JJ, et al. Modulation of parasympathetic neuron phenotype and function by sympathetic innervation. Auton Neurosci. 2002; 96(1): 33-42. doi: 10.1016/s1566-0702(01)00371-x.

19. Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart--a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol. 2001; 86(3): 319-29. doi: 10.1113/eph8602146.

20. Masuda Y. Role of the parasympathetic nervous system and interaction with the sympathetic nervous system in the early phase of hypertension. J Cardiovasc Pharmacol. 2000; 36 Suppl 2: S61-4. doi: 10.1097/ 00005344-200000006-00013.

21. Oberhauser V, Schwertfeger E, Rutz T, et al. Acetylcholine release in human heart atrium: influence of muscarinic autoreceptors, diabetes, and age. Circulation. 2001; 103(12): 1638-43. doi: 10.1161/01.cir.103.12.1638.

22. Khan AA, Lip GYH, Shantsila A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur J Clin Invest. 2019; 49(11): e13174. doi: 10.1111/eci.13174.

23. Smith-White MA, Wallace D, Potter EK. Sympathetic-parasympathetic interactions at the heart in the anaesthetised rat. J Auton Nerv Syst. 1999; 75(2-3): 171-5. doi: 10.1016/s0165-1838(98)00169-6.

24. Kawai Y, Senba E. Correlation between dendrodendritic synapses of adrenergic type and synaptically evoked hyperpolarization in the sympathetic ganglion of adult rats. Neuroscience. 1995; 68(3): 925-35. doi: 10.1016/0306-4522(95)00202-t.

25. Benarroch EE. Physiology and Pathophysiology of the Autonomic Nervous System. Continuum (Minneap Minn). 2020; 26(1): 12-24. doi: 10.1212/CON.0000000000000817.

26. Schwartz PJ, De Ferrari GM. Sympathetic-parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart Fail Rev. 2011; 16(2): 101-7. doi: 10.1007/s10741-010-9179-1.

27. Kamardina OL, Bass IN. Anatomiya i fiziologiya: Ucheb. posobie dlya inostr. Uchashchihsya. CH. 1. Оrdena Lenina gos. un-t im. Leninskogo komsomola. Podgot. fak. dlya inostr. grazhdan. Voronezh, 1971. (In Russ.)

28. Neto FR, Sperelakis N. Analysis of the hyperpolarizing effect of catecholamines on canine cardiac Purkinje fibres. Br J Pharmacol. 1989; 96(3): 591-8. doi: 10.1111/j.1476-5381.1989.tb11857.x.

29. Hatip-Al-Khatib I, Bolukbaşi-Hatip F. Modulation of the negative inotropic effect of haloperidol by drugs with positive inotropic effects in isolated rabbit heart. Pharmacology. 2002 Sep;66(1):19-25. doi: 10.1159/000063249.

30. Belyakov KF. Izmenenie shiriny priishemicheskoj i otdalennoj zon miokarda. Kardiologiya. 1980; 4: 96-98 (In Russ).

31. Belyakov KF. Sokratitel’naya funkciya otdel’nyh uchastkom miokarda i serdca v celom pri ostroj koronarnoj nedostatochnosti: Dis. ... kand. med. nauk. Moskva; 1973. (In Russ).

32. Burgdorf C, Richardt D, Kurz T, et al. Adenosine inhibits norepinephrine release in the postischemic rat heart: the mechanism of neuronal stunning. Cardiovasc Res. 2001; 49(4): 713-20.

33. Canty JMJr, Fallavollita JA. Chronic hibernation and chronic stunning: a continuum. J Nucl Cardiol. 2000; 7(5): 509-27.

For citation

Shevchenko Yu.L., Lychkova A.E., Ulbashev D.S. The regularity of changes in the electrical resistance of the myocardium as an indirect confirmation of the phenomenon of alternate contraction of cardiomyocyte clusters. Bulletin of Pirogov National Medical & Surgical Center. 2022;17(3):11-17. (In Russ.) https://doi.org/10.25881/20728255_2022_17_3_11