Authors
SHevchenko YU.L., Stojko YU.M., Gudymovich V.G.
Pirogov National Medical and Surgical Center, Moscow
Abstract
The review article analyzes in detail the data obtained as a result of experimental and clinical studies on the interaction of various viruses with the endothelium and endocardium. The issues of the impact of a viral infection on endothelial cells, possible mechanisms of their damage, as well as the activation of pathological cascades of intravascular thrombosis, acute respiratory distress syndrome, and an uncontrolled generalized inflammatory process are considered. Taking into account the mechanisms for the implementation of these processes, ways to correct these disorders with the help of endothelial protectors, in particular, by prescribing the drug sulodexide, are given.
Keywords: viral infection, endothelium, endocardium, endothelial dysfunction, sulodexide.
References
1. Fosse JH., Haraldsen G, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front. Cardiovasc. Med. 2021; 24(8): 619690. doi: 10.3389/ fcvm.2021.619690.
2. Friedman HM, Macarak EJ, MacGregor RR, et al. Virus infection of endothelial cells. J. Infect. Dis. 1981; 143(2): 266-273. doi: 10.1093/infdis/ 143.2.266.
3. Goodrum F, Bughio F. Viral infection at the endothelium. Oncotarget. 2015; 6(29): 26541–26542. doi: 10.18632/oncotarget.5246.
4. SHevchenko YUL. Hirurgicheskoe lechenie infekcionnogo endokardita i osnovy gnojno-septicheskoj kardiohirurgii. 2-e izd. M.: Dinastiya, 2020. 448 р. (In Russ).
5. SHevchenko YUL, Matveev SA. Kletochnye tekhnologii v serdechno-sosudistoj hirurgii. M.: Medicina, 2005. 160 р. (In Russ).
6. Barbosa LC, Gonçalves TL, Prudencio de Araujo L, et al. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021; 137: 106829. doi: 10.1016/j.vph.2021.106829.
7. Evans PC, Rainger GE, Mason JC, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116(14): 2177-2184. doi: 10.1093/cvr/cvaa230.
8. Jakab M, Augustin HG. Understanding angiodiversity: insights from single cell biology. Development. 2020; 147(15): 1-13. doi: 10.1242/dev.146621.
9. Aird WC. Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res. 2006; 98(2):159-162. doi: 10.1161/01.RES.0000204553. 32549.a7.
10. Aitsebaomo J, Portbury AL, Schisler JC, Patterson C. Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res. 2008; 103(9): 929-939. doi: 10.1161/CIRCRESAHA.108.184937.
11. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012; 2(1): a006429. doi: 10.1101/cshperspect.a006429.
12. Regan ER, Aird WC. Dynamical systems approach to endothelial heterogeneity. Circ Res. 2012; 111: 110-130. doi: 10.1161/CIRCRESAHA.111.261701.
13. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007; 9: 121-167. doi: 10.1146/annurev.bioeng.9.060906.151959.
14. Wasik BR, Barnard KN, Parrish CR. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol. 2016; 24(12): 991-1001. doi: 10.1016/j.tim.2016.07.005.
15. SHevchenko YUL, Gorohovatskij YUI, Azizova OA, Zamyatin MN. Sistemnyj vospalitel’nyj otvet pri ekstremal’noj hirurgicheskoj agressii. M.: RAEN, 2009. 273 s. (In Russ).
16. Blume C, Reale R, Held M, et al. Cellular crosstalk between airway epithelial and endothelial cells regulates barrier functions during exposure to double-stranded RNA. Immun Inflamm Dis. 2017; 5(1): 45-56. doi: 10.1002/iid3.139.
17. Millar FR, Summers C, Grif MJ, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax. 2016; 71: 462-473. doi: 10.1136/thoraxjnl-2015-207461.
18. De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020; 11: 3434. doi: 10.1038/s41467-020-17292-4.
19. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clin. Immunol. 2020; 215: 108448. doi: 10.1016/j.clim.2020.108448.
20. Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020; 98(2): 314-322. doi: 10.1016/j.kint.2020.05.013.
21. Pelaia C, Tinello C, Vatrella A, et al. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther. Adv. Respir. Dis. 2020; 4: 1-9. doi: 10.1177/1753466620933508.
22. Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 2020; 20(9): 515-516. doi: 10.1038/s41577-020-0407-1.
23. Panfoli I. Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis. Clin. Med. 2020; 20(5): e146-e147. doi: 10.7861/clinmed.2020-0252.
24. Xavier AR, Silva JS, Almeida JP, et al. COVID-19: clinical and laboratory manifestations in novel coronavirus infection. J. Bras. Patol. E Med. Lab. 2020; 56:1-9. doi: 10.5935/1676-2444.20200049.
25. Ratajczak MZ, Bujko K, Ciechanowicz A, et al. SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45 − precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev. Rep. 2020; 17(1): 266-277. doi: 10.1007/s12015-020-10010-z.
26. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N.Engl. J. Med. 2020; 383(2): 120-128. doi: 10.1056/NEJMoa2015432.
27. Kaur S, Tripathi DM, Yadav A. The enigma of endothelium in COVID-19. Front. Physiol. 2020; 11: 989. doi: 10.3389/fphys.2020.00989.
28. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care. 2020; 24(1): 353. doi: 10.1186/s13054-020-03062-7.
29. Grobler C, Maphumulo SC, Grobbelaar LM, et al. Covid-19: The rollercoaster of fibrin(ogen), D-dimer, Von Willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int. J. Mol. Sci. 2020; 21(14): 5168. doi: 10.3390/ijms21145168.
30. Gong JM, Du JS, Han DM. Implications of bed rest for patients with acute deep vein thrombosis: a qualitative study. Patient Prefer. Adherence. 2020; 14: 1659-1667. doi: 10.2147/PPA.S271481.
31. Klok FA, Kruip MJ, van der Meer NJ, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020; 191: 145-147. doi: 10.1016/j.thromres.2020.04.013.
32. Stefanini GG, Montorfano M, Trabattoni D, et al. ST-elevation myocardial infarction in patients with COVID-19: clinical and angiographic outcomes. Circulation. 2020; 141(25): 2113-2116. doi: 10.1161/CIRCULATIONAHA. 120.047525.
33. Fried JA, Ramasubbu К, Bhatt R, et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation. 2020; 141(23): 1930-1936. doi: 10.1161/CIRCULATIONAHA.120.047164.
34. Maev IV, SHpektor AV, Vasil’eva EYU. Novaya koronavirusnaya infekciya COVID-19: ekstrapul’monal’nye proyavleniya. Terapevticheskij arhiv. 2020; 92(8): 4-11. (In Russ). doi: 10.26442/00403660.2020.08.000767.
35. Ponomareva EYu, Kosheleva NA. Sochetanie infekcionnogo endokardita i infekcii COVID-19 u molodoj pacientki. Arhiv vnutrennej mediciny. 2021; 11(4): 297-302. (In Russ). doi: 10.20514/2226-6704-2021-11-4-297-302.
36. Cosyns В, Motoc А, Arregle F, et al. Not to Forget Infective Endocarditis in COVID-19 Era. J Am Coll Cardiol Cardiovasc Imaging. 2020; 13(11): 2470-2471. doi: 10.1016/j. jcmg.2020.07.027.
37. Hussain A, Roberts N, Oo A. Prosthetic aortic valve endocarditis complicated by COVID-19 and hemorrhage. J Card Surg. 2020; 35(6): 1348-1350. doi: 10.1111/jocs.14643.
38. Kuznetsov MR, Reshetov IV, Papysheva OV, et al. The main approaches to anticoagulant therapy for COVID-19. Lechebnoe delo. 2020; 2: 66-73. (In Russ). doi: 10.24411/2071-5315-2020-12213.
39. Ciszewicz M, Polubinska A, Antoniewicz A. et al. Sulodexide suppresses inflammation in human endothelial cells and prevents glucose cytotoxicity. Transl Res. 2009; 153(3): 118-123. doi: 10.1016/j.trsl.2008.12.007.
40. Suminska-Jasinska K, Polubinska A, Ciszewicz M, Mikstacki A. Sulodexide reduces senescence-related changes in human endothelial cells. International Medical Journal of Experimental and Clinical Research 17(4): CR222-6. doi:10.12659/MSM.881719.