Authors
Khanaliev B.V., Ivanov A.V.
Pirogov National Medical and Surgical Center, Moscow
Abstract
Flexible ureterorenoscopy (URS) is the surgery of choice in the treatment of patients with nephrolithiasis. Currently, this technique is successfully used in the treatment of patients with stones not only less than 2 cm, but also in some cases more than 2 cm, with any localization in the kidney with a high frequency of complete stone removal, significantly reducing the time spent in the hospital. However, despite the high manufacturability and safety, flexible URS has its possible complications, which are considered in this literature review.
Keywords: flexible URS, Clavien-Dindo classification, infectious complications, traumatic complications.
References
1. Gadzhiev NK, Gorgotsky IA, Shkarupa AG, et al. Flexible ureterorenoscopy. Methodological recommendations. St. Petersburg: St. Petersburg State University Clinic of High Medical Technologies named after N. I. Pirogov, 2022. (In Russ.)
2. Schoenthaler M. The Post-Ureteroscopic Lesion Scale (PULS): a multicenter video-based evaluation of inter-rater reliability / Schoenthaler M., Buchholz N., Farin E. et al. World J Urol. 2014; 32(4): 1033-40. doi: 10.1007/s00345-013-1185-1.
3. Traxer O. Prospective Evaluation and Classification of Ureteral Wall Injuries Resulting from Insertion of a Ureteral Access Sheath During Retrograde Intrarenal Surgery. The Journal of Urology. 2012; 189. doi:10.1016/ j.juro.2012.08.197.
4. Xu Y, Min Z, Wan SP, et al. Complications of retrograde intrarenal surgery classified by the modified Clavien grading system. Urolithiasis. 2018; 46(2): 197-202. doi: 10.1007/s00240-017-0961-6.
5. Whitehurst LA, Somani BK. Perirenal Hematoma After Ureteroscopy: A Systematic Review. J Endourol. 2017; 31: 438-445. doi: 10.1089/end. 2016.0832.
6. Rosette J, Denstedt J, Geavlete P, et al. The clinical research office of the endourological society ureteroscopy global study: indications, complications, and outcomes in 11,885 patients. J Endourol; 2014; 28: 131-139. doi: 10.1089/end.2013.0436.
7. Dybowski B, Bres-Niewada E, Rzeszutko M, et al. Risk factors for infectious complications after retrograde intrarenal surgery – a systematic review and narrative synthesis. Cent European J Urol. 2021; 74: 437-445. doi: 10.5173/ceju.2021.250.
8. Zhang H, Jiang T, Gao R, et al. Risk factors of infectious complications after retrograde intrarenal surgery: a retrospective clinical analysis. J Int Med Res. 2020; 48(9). doi: 10.1177/0300060520956833.
9. Bhojani N, Miller LE., Bhattacharyya S, et al. Risk Factors for Urosepsis After Ureteroscopy for Stone Disease: A Systematic Review with Meta-Analysis. J Endourol. 2021; 35: 991-1000. doi: 10.1089/end.2020.1133.
10. Rehman J, Monga M, Landman J, et al. Characterization of intrapelvic pressure during ureteropyeloscopy with ureteral access sheaths. J Urology. 2003; 61: 713-718. doi: 10.1016/s0090-4295(02)02440-8.
11. Schwalb DM, Eshghi M, Davidian M, et al. Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol. 1993; 149: 1576-1585. doi: 10.1016/s0022-5347(17)36456-x.
12. Jun HU, Frimodt-Møller PC, Osther PJ, Mortensen J. Pharmacological effect on pyeloureteric dynamics with a clinical perspective: a review of the literature. Urol Res. 2006; 34: 341-350. doi: 10.1007/s00240-006-0069-x.
13. Auge BK, Pietrow PK, Lallas CD, et al. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004; 18: 33-36. doi: 10.1089/ 089277904322836631.
14. Monga M, Bodie J, Ercole B. Is there a role for small-diameter ureteral access sheaths? Impact on irrigant flow and intrapelvic pressures. Urology. 2004; 64: 439-441. doi: 10.1016/j.urology.2004.04.060.
15. Sener TE, Cloutier J, Villa L, et al. Can We Provide Low Intrarenal Pressures with Good Irrigation Flow by Decreasing the Size of Ureteral Access Sheaths? J Endourol. 2016; 30: 49-55. doi: 10.1089/end.2015.0387.
16. Ng YH, Somani BK, Dennison A, et al. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol. 2010; 24: 1915-1920. doi: 10.1089/end.2010.0188.
17. Tokas T, Skolarikos A, Herrmann T, et al. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol. 2019; 37: 133-142. doi: 10.1007/s00345-018-2379-3.
18. Noureldin YA, Kallidonis P, Ntasiotis P, et al. The Effect of Irrigation Power and Ureteral Access Sheath Diameter on the Maximal Intra-Pelvic Pressure During Ureteroscopy: In Vivo Experimental Study in a Live Anesthetized Pig. J Endourol. 2019; 33: 725-729. doi: 10.1089/end.2019.0317.
19. Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013; 189: 580-584. doi: 10.1016/j.juro.2012.08.197.
20. Breda A, Ogunyemi O, Leppert JT, et al. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater--is this the new frontier? J Urol. 2008; 179: 981-984. doi: 10.1016/j.juro.2007.10.083.
21. Somani BK, Sun GY, Osther PJ, et al. Complications associated with ureterorenoscopy (URS) related to treatment of urolithiasis: the Clinical Research Office of Endourological Society URS Global study. World J Urol. 2017; 35: 675-681. doi: 10.1007/s00345-016-1909-0.
22. Aldoukhi AH, Ghani KR, Hall TL, et al. Thermal Response to High-Power Holmium Laser Lithotripsy. J Endourol. 2017; 31: 1308-1312. doi: 10.1089/end.2017.0679.
23. Malhasyan V.A. Oslozhneniya gibkoj ureterorenoskopii. [URL]. (In Russ.)
24. Aldoukhi AH, Hall TL, Ghani KR, et al. Caliceal Fluid Temperature During High-Power Holmium Laser Lithotripsy in an In Vivo Porcine Model. J Endourol. 2018; 32: 724-729. doi: 10.1089/end.2018.0395.
25. Maxwell AD, Conaghy BM, Harper JD, et al. Simulation of Laser Lithotripsy-Induced Heating in the Urinary Tract. J Endourol. 2019; 33: 113-119. doi: 10.1089/end.2018.0485.
26. Parkhomenko E, Fazio A, Tran T, et al. A multi-institutional study of struvite stones: patterns of infection and colonization. J Endourol. 2017; 317: 533-537. doi: 10.1089/end.2016.0885.
27. Fan J, Wan S, Liu L, et al. Predictors for uroseptic shock in patients who undergo minimally invasive percutaneous nephrolithotomy. Urolithiasis. 2017; 45: 573-578. doi: 10.1007/s00240-017-0963-4.
28. Khusid JA, Hordines JC, Sadiq AS, et al. Prevention and Management of Infectious Complications of Retrograde Intrarenal Surgery. Sec. Genitourinary Surgery. 2021. doi: 10.3389/fsurg.2021.718583.
29. Marien T, Miller NL. Treatment of the infected stone. Urol Clin North Am. 2015; 42: 459-472. doi: 10.1016/j.ucl.2015.05.009.
30. Türk C, Neisius A, Petrik A, et al. EAU Guidelines on Urolithiasis. European Association of Urology. 2017; 84.
31. Korets R, Graversen JA, Kates M, et al. Post-percutaneous nephrolithotomy systemic inflammatory response: a prospective analysis of preoperative urine, renal pelvic urine and stone cultures. J Urol. 2011; 186: 1899-1903. doi: 10.1016/j.juro.2011.06.064.
32. Castellani D, Teoh JY-C, Pavia MP, et al. Assessing the Optimal Urine Culture for Predicting Systemic Inflammatory Response Syndrome After Percutaneous Nephrolithotomy and Retrograde Intrarenal Surgery: Results from a Systematic Review and Meta-Analysis. J Endourol. 2022; 36: 158-168. doi: 10.1089/end.2021.0386.
33. Tolordava ER. The role of bacterial biofilms in the etiopathogenesis of urolithiasis. [abstract of dissertation] M.; 2014. (In Russ.)
34. Patel N, Shi W, Liss M, et al. Multidrug resistant bacteriuria before percutaneous nephrolithotomy predicts for postoperative infectious complications. J Endourol. 2015; 29: 531-536. doi: 10.1089/end.2014.0776.