DOI: 10.25881/20728255_2024_19_3_136

Authors

Makarov S.А.1, Aganesov A.G.1, Alexanyan M.M.1, Demina V.А.2

1 Petrovsky Russian Research Center of Surgery, Moscow

2 Kurchatov Institute, Moscow

Abstract

Introduction: degenerative and dystrophic diseases of the lumbar spine in Russia rank 5th among the causes of hospitalization and 3rd among the causes of surgical treatment. Herniated discs are the most common degenerative disease of the lumbar spine causing low back pain and radicular symptoms in the lower extremities. Lumbar microdiscectomy has become one of the most common spinal surgeries. Various worldwide studies cite a postoperative recurrence rate ranging from 1.1% to 27.3%. Recurrences of herniated discs are one of the main reasons for revision surgeries in spinal surgery. Also in a number of cases, radicular pain syndrome persists after microdiscectomy, which may be associated with biochemical changes in the intervertebral disc. Through the annular defect inflammatory mediators (interleukins), cytokines and chemical agents are released from the pulposus nucleus, which cause irritation of the spinal ganglion and nerve root. Purpose of the study: to analyze the frequency and causes of recurrence of herniated discs after microdiscectomy and sequestrectomy according to the literature, which will allow us to develop a device to reduce the number of recurrences.

Materials and methods: we searched available literature sources, including PubMed and eLibrary databases, for the following keywords: "recurrence of disc herniation", "annulus fibrosus defect", "annulus fibrosus prosthesis", "lumbar disc reoperation", "annulus fibrosus defects", "annulus fibrosus prosthesis". The depth of the search was more than 20 years (2002-2023). As a result of the search, 108 articles were found and analyzed.

Results: in our opinion and according to the literature, the most complete reduction in the number of disease recurrences is possible only with the help of mechanical obstruction of regenerate or intervertebral disc substance exit into the spinal canal by covering the intraoperative defect of the annulus fibrosus. We analyzed the devices, methods that were used earlier or are used now, formulated the requirements that, in our opinion, the implant should possess. Based on this, we came to the conclusion that at present there is no device that meets all the requirements. The time of implant degradation should coincide with the process of fibrous ring regeneration to ensure proper tissue remodeling. The change in the mechanical properties of the implant as a result of degradation must remain compatible with the repair and regeneration process. Finally, the implant should contribute to the restoration of normal spine biomechanics: restoration of IVD height; correct distribution of load on all areas of the IVD; restoration of physiologic volume of movement, lordosis; achievement of sagittal balance.

Conclusion: based on the analysis of the world literature data, we started to develop a biocompatible biodegradable device for filling the intervertebral disc cavity and closing the defect in the area of the annulus fibrosus after sequestrum and microdiscectomy to restore the biomechanics of the vertebral-motor segment in the lumbar spine and to eliminate postoperative recurrences. At present, the FGBNU "Petrovsky RRCS" together with SIC "Kurchatov Institute" are conducting laboratory tests of prototypes to study the static properties of materials and select the most suitable one.

Keywords: recurrent disc herniation, microdiscectomy, sequestrectomy, annulus fibrosous.

References

1. Martins DE, de Medeiros VP, Wajchenberg M, Paredes-Gamero EJ, Lima M, Reginato RD, et al. Changes in human intervertebral disc biochemical composition and bony end plates between middle and old age. PLoS One. 2018; 13(9): 1-17. doi: 10.1371/journal. pone.0203932.

2. Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003; 5(3): 120-30. doi: 10.1186/ar629.

3. Griffith JF, Wang YXJ, Antonio GE, Choi KC, Yu A, Ahuja AT, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2007; 32(24): 708-12. doi: 10.1097/BRS.0b013e31815a59a0.

4. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001; 26(17): 1873-8. doi: 10.1097/00007632-200109010-00011.

5. Guiot BH, Fessler RG, Benzel EC, Parsa AT, McCormick PC, Sonntag VKH. Molecular biology of degenerative disc disease. Neurosurgery. 2000; 47(5): 1034-40.

6. Amin RM, Andrade NS, Neuman BJ. Lumbar Disc Herniation. Curr Rev Musculoskelet Med. 2017; 10(4): 507-16. doi: 10.1007/s12178-017-9441-4.

7. Suthar P, Patel R, Mehta C, Patel N. MRI evaluation of lumbar disc degenerative disease. J Clin Diagnostic Res. 2015; 9(4): TC04-9. doi: 10.7860/JCDR/2015/11927.5761.

8. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: Version 2.0 Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J. 2014; 14(11): 2525-45. doi: 10.1016/j.spinee.2014.04.022.

9. Jordan J, Konstantinou K, O’Dowd J. Herniated lumbar disc. BMJ Clin Evid. 2009; 7.

10. Omidi-Kashani F, Hejrati H, Ariamanesh S. Ten important tips in treating a patient with lumbar disc herniation. Asian Spine J. 2016; 10(5): 955-63. doi: 10.4184/asj.2016.10.5.955.

11. Kim CH, Chung CK, Park CS, Choi B. Reoperation Rate After Surgery for Lumbar. Spine (Phila Pa 1976). 2013; 38(7): 581-90. doi: 10.1155/2018/9073460.

12. Golovin KYu, Aganesov AG, Kheylo AL, Gurova OYu. Surgical treatment of degenerative diseases of the lumbar spine in patients with overweight and obesity. Russian Journal of Spine Surgery. 2013; 3: 053-061. (In Russ.) doi: 10.14531/ss2013.3.53-61.

13. Aganesov AG, Alexanyan MM, Makarov SA, Mikaelyan KP. Modern minimally invasive technologies in spine surgery. Pirogov Russian Journal of Surgery. 2021; 6(2): 65-72. (In Russ.) doi: 10.17116/hirurgia202106265.

14. Krylov VV, Konovalov AN. The current state of neurosurgery in russian federation. Russian journal of neurosurgery. 2016; 3: 3-44. (In Russ.)

15. Szpalski M, Gunzburg R, Rydevik BL, Le Huec JC, Mayer HM. Surgery for low back pain. Surg Low Back Pain. 2010; 34(10): 1-285. doi: 10.1007/s00590-012-1095-8.

16. Miller LE, McGirt MJ, Garfin SR, Bono CM. Association of Annular Defect Width after Lumbar Discectomy with Risk of Symptom Recurrence and Reoperation. Spine (Phila Pa 1976). 2018; 43(5): E308-15. doi: 10.1097/BRS.0000000000002501.

17. Shin BJ. Risk factors for recurrent lumbar disc herniations. Asian Spine J. 2014; 8(2): 211-5. doi: 10.4184/asj.2014.8.2.211.

18. Asch HL, Lewis PJ, Moreland DB, Egnatchik JG, Yu YJ, Clabeaux DE, et al. Prospective multiple outcomes study of outpatient lumbar microdiscectomy: Should 75 to 80% success rates be the norm? J Neurosurg. 2002; 96(1S): 34-44. doi: 10.3171/spi.2002.96.1.0034.

19. Caspar W, Campbell B, Barbier DD, Kretschmmer R, Gotfried Y. The Caspar microsurgical discectomy and comparison with a conventional standard lumbar disc procedure. Neurosurgery. 1991; 28(1): 78-86; discussion 86-7. doi: 10.1097/00006123-199101000-00013.

20. Häkkinen A, Kiviranta I, Neva MH, Kautiainen H, Ylinen J. Interest on Residives During a 5-Year Follow-Up. BMC Musculoskelet Disord. 2007; 6: 1-6. doi: 10.1186/1471-2474-8-2.

21. Weinstein JN, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila. Pa. 1976). 2008; 33(25): 2789-2800. doi: 10.1097/BRS.0b013e31818ed8f4.

22. Loparev EA, Klimov VS, Evsyukov AV. Reoperation after herniated disc removal in patients with lumbar degenerative disc disease. Russian Journal of Spine Surgery. 2017; 14(1): 51-59. (In Russ.) doi: 10.14531/ss2017.1.51-59.

23. Carragee EJ, Spinnickie AO, Alamin TF, Paragioudakis S. A prospective controlled study of limited Versus subtotal posterior discectomy: Short-term outcomes in patients with herniated lumbar intervertebral discs and large posterior anular defect. Spine (Phila Pa 1976). 2006; 31(6): 653-7. doi: 10.1097/01.brs.0000203714.76250.68.

24. Urgery S, Ncorporated I, Leven D, Passias PG, Errico TJ, Lafage V, et al. Risk Factors for Reoperation in Patients Treated Surgically for Intervertebral Disc Herniation. 2015; 1316-25. doi: 10.2106/JBJS.N.01287.

25. Parker SL, Xu R, McGirt MJ, Witham TF, Long DM, Bydon A. Long-term back pain after a single-level discectomy for radiculopathy: Incidence and health care cost analysis – Clinical article. J Neurosurg Spine. 2010; 12(2): 178-82. doi: 10.3171/2009.9.SPINE09410.

26. Tufan K, Sen O, Cekinmez M, Bolat FA, Alkan O, Sarica FB, et al. Comparison of E-selectin and the other inflammatory markers in lumbar disc herniation: A new promising therapeutical window for radicular pain. J Spinal Disord Tech. 2012; 25(8): 443-6. doi: 10.1097/BSD.0b013e318238e2db.

27. Geiss A, Larsson K, Junevik K, Rydevik B, Olmarker K. Autologous nucleus pulposus primes T cells to develop into lnterleukin-4-producing effector cells: An experimental study on the autoimmune properties of nucleus pulposus. J Orthop Res. 2009; 27(1): 97-103. doi: 10.1002/jor.20691.

28. Basankin IV, Porkhanov VA, et al. Comparison of transpedicular endoscopic sequestrectomy and discectomy in the treatment of lumbar intervertebral disc herniation with a high degree of migration. Burdenko’s Journal of Neurosurgery. 2020; 84(6): 15-25. (In Russ.) doi: 10.17116/neiro20208406115.

29. Ran J, Hu Y, Zheng Z, Zhu T, Zheng H, Jing Y, et al. Comparison of discectomy versus sequestrectomy in lumbar disc herniation: A meta-analysis of comparative studies. PLoS One. 2015; 10(3): 1-14. doi: 10.1371/journal.pone.0121816.

30. Heuer F, Ulrich S, Claes L, Wilke HJ. Biomechanical evaluation of conventional anulus fibrosus closure methods required for nucleus replacement: Laboratory investigation. J Neurosurg Spine. 2008; 9(3): 307-13. doi: 10.3171/SPI/2008/9/9/307.

31. Strenge KB, et al. Multicenter study of lumbar discectomy with Barricaid annular closure device for prevention of lumbar disc reherniation in US patients: A historically controlled post-market study protocol. Medicine (Baltimore). 2019; 98(35): e16953. doi: 10.1097/MD.0000000000016953.

32. Adams MA, Stefanakis M, Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implications for physical therapies for discogenic back pain. Clin Biomech. 2010; 25(10): 961-71. doi: 10.1016/j.clinbiomech.2010.07.016.

33. Koepsell L, Zhang L, Neufeld D, Fong H, Deng Y. Electrospun Nanofibrous Polycaprolactone Scaffolds for Tissue Engineering of Annulus Fibrosus. Macromol Biosci. 2011; 11(3): 391-9. doi: 10.1002/mabi.201000352.

34. Bateman AH, Balkovec C, Akens MK, Chan AHW, Harrison RD, Oakden W, et al. Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device – in vivo porcine and ex vivo biomechanical evaluation. Spine J [Internet]. 2016; 16(7): 889-95. doi: 10.1016/j.spinee.2016.03.005.

35. Qi L, Li M, Si H, Wang L, Jiang Y, Zhang S, et al. The clinical application of “jetting suture” technique in annular repair under microendoscopic discectomy. Medicine (Baltimore). 2016; 95(31): e4503. doi: 10.1097/ MD.0000000000004503.

36. Bartlett A, Wales L, Houfburg R, Durfee WK, Griffith SL, Bentley I. Optimizing the effectiveness of a mechanical suture-based anulus fibrosus repair construct in an acute failure laboratory simulation. J Spinal Disord Tech. 2013; 26(7): 393-9.

37. Likhitpanichkul M, Kim Y, Torre OM, See E, Kazezian Z, Pandit A, et al. Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug. Spine J. 2015; 15(9): 2045-54. doi: 10.1016/j.spinee.2015.04.026.

38. Cruz MA, McAnany S, Gupta N, Long RG, Nasser P, Eglin D, et al. Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks. J Biomech Eng. 2017; 139(8): 1-7. doi: 10.1115/1.4036623.

39. Vergroesen PPA, Bochyńska AI, Emanuel KS, Sharifi S, Kingma I, Grijpma DW, et al. A biodegradable glue for annulus closure: Evaluation of strength and endurance. Spine (Phila Pa 1976). 2015; 40(9): 622-8. doi: 10.1097/BRS.0000000000000792.

40. Chik TK, Ma XY, Choy TH, Li YY, Diao HJ, Teng WK, et al. Photochemically crosslinked collagen annulus plug: A potential solution solving the leakage problem of cell-based therapies for disc degeneration. Acta Biomater. 2013; 9(9): 8128-39. doi: 10.1016/j.actbio.2013.05.034.

41. Ledet EH, Jeshuran W, Glennon JC, Shaffrey C, De Deyne P, Belden C, et al. Small intestinal submucosa for anular defect closure: Long-term response in an in vivo sheep model. Spine (Phila Pa 1976). 2009; 34(14): 1457-63. doi: 10.1097/BRS.0b013e3181a48554.

42. Ardeshiri A, Miller LE, Synowitz M, Jadik S. Surgical Experience and Complications in 50 Patients Treated with an Anular Closure Device Following Lumbar Discectomy. Orthop Surg. 2019; 11(3): 431-7. doi: 10.1111/os.12495.

43. Krutko AV, Baykov ES, Sadovoy MA. Reoperation after microdiscectomy of lumbar herniation: Case report. Int J Surg Case Rep. 2016; 24: 119-23. doi: 10.1016/j.ijscr.2016.04.043.

44. Lange N, Meyer B, Shiban E. Symptomatic annulus-repair-device loosening due to a low-grade infection. Acta Neurochir (Wien). 2018; 160(1): 199-203. doi: 10.1007/s00701-017-3371-1.

45. Krutko AV, Sanginov AD. On the extent of preoperative radiological and ct examination of patients with degenerative diseases of the lumbar SPINE. Russian Journal of Spine Surgery. 2018; 15(2): 66-75. (In Russ.) doi: 10.14531/ss2018.2.66-75.

46. Bergknut N, Smolders LA, Koole LH, Voorhout G, Hagman RE, Lagerstedt AS, et al. The performance of a hydrogel nucleus pulposus prosthesis in an ex vivo canine model. Biomaterials. 2010; 31(26): 6782-8. doi: 10.1016/j.biomaterials.2010.05.032.

47. Gluais M, Clouet J, Fusellier M, Decante C, et al. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials. 2019; 205: 81-93. doi: 10.1016/j.biomaterials.2019.03.010.

48. Ahlgren BD, Lui W, Herkowitz HN, Panjabi MM, Guiboux JP. Effect of anular repair on the healing strength of the intervertebral disc: A sheep model. Spine (Phila Pa 1976). 2000; 25(17): 2165-70. doi: 10.1097/ 00007632-200009010-00004.

49. Bron JL, Helder MN, Meisel HJ, Van Royen BJ, Smit TH. Repair, regenerative and supportive therapies of the annulus fibrosus: Achievements and challenges. Eur Spine J. 2009; 18(3): 301-13. doi: 10.1007/s00586-008-0856-x.

50. Salzmann SN, Plais N, Shue J, Girardi FP. Lumbar disc replacement surgery – successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med. 2017; 10(2): 153-9. doi: 10.1007/s12178-017-9397-4.

For citation

Makarov S.А., Aganesov A.G., Alexanyan M.M., Demina V.А. Prevention of recurrent disc herniation after lumbar microdiscectomy and sequestrectomy. Bulletin of Pirogov National Medical & Surgical Center. 2024;19(3):136-140. (In Russ.) https://doi.org/10.25881/20728255_2024_19_3_136