Authors
Shevchenko Yu.L., Borshchev G.G., Bagaudin T.Z., Maslennikov M.A., Zayniddinov F.A.
St. George thoracic and cardiovascular surgery clinic Pirogov National Medical and Surgical Center, Moscow
Abstract
Coronary heart disease plays a leading role in mortality from circulatory system diseases. In most cases, atherosclerotic process is underlying stenotic lesions of the coronary arteries. Current methods of CHD treatment, in particular, optimal medical therapy and surgical procedures (coronary bypass surgery and percutaneous coronary interventions), in some cases, are not able to ensure complete myocardial revascularisation. In this respect, a number of investigators are searching for new methods to solve this problem. One of the directions of the search is inducing of noncoronary collateral circulation development. This review discusses modern concepts of myocardial collateral blood supply, physiological aspects of the process of vascular network regeneration, contains data on intra- and extracardiac sources of blood flow, existing approaches to functional evaluation of certain collaterals, principles of stimulation of indirect myocardial revascularisation (based on the example of YurLeon technique).
Keywords: angiogenesis, coronary heart disease, coronary artery bypass, collateral blood circulation, YurLeon technique.
References
1. Zdravookhranenie v Rossii. Okladnikov SM, Nikitina SYU, editors. Moscow: Rosstat; 2023. (In Russ.)
2. Clinical practice guidelines for Stable coronary artery disease 2020. Russian Journal of Cardiology. 2020; 25(11): 4076. (In Russ.) doi: 10.15829/1560-4071-2020-4076.
3. Doenst T, Haverich A, Serruys P, et al. PCI and CABG for Treating Stable Coronary Artery Disease: JACC Review Topic of the Week. J Am Coll Cardiol. 2019; 73(8): 964-976. doi: 10.1016/j.jacc.2018.11.053.
4. Doenst T, Sigusch H. Surgical collateralization: The hidden mechanism for improving prognosis in chronic coronary syndromes. J Thorac Cardiovasc Surg. 2022; 163(2): 703-708. e2. doi: 10.1016/j.jtcvs.2020.10.121.
5. Stathogiannis K, Fearon WF. Untangling diffuse CAD: Light at the end of the tunnel? Int J Cardiol. 2022; 362: 20-21. doi: 10.1016/ j.ijcard.2022.05.042.
6. Armstrong EJ, Rutledge JC, Rogers JH. Coronary artery revascularization in patients with diabetes mellitus. Circulation. 2013; 128(15): 1675-1685. doi: 10.1161/circulationaha.113.002114.
7. Muraca I, Carrabba N, Virgili G, et al. Chronic total occlusion revascularization: A complex piece to «complete» the puzzle. World J Cardiol. 2022; 14(1): 13-28. doi: 10.4330/wjc.v14.i1.13.
8. Gaba P, Gersh BJ, Ali ZA, Moses JW, Stone GW. Complete versus incomplete coronary revascularization: definitions, assessment and outcomes. Nat Rev Cardiol. 2021; 18(3): 155-168. doi: 10.1038/ s41569-020-00457-5.
9. Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the coronary collateral circulation on mortality: a meta-analysis. Eur Heart J. 2012; 33(5): 614-621. doi: 10.1093/eurheartj/ehr308.
10. Moberg A. Anastomoses between extracardiac vessels and coronary arteries. I. Via bronchial arteries. Post-mortem angiographic study in adults and newborn infants. Acta Radiol Diagn (Stockh). 1967; 6(2): 177-192. doi: 10.1177/028418516700600209.
11. Tepper OM, Capla JM, Galiano RD, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005; 105(3): 1068-1077. doi: 10.1182/blood-2004-03-1051.
12. Griffioen AW. Angiogenesis. In: Schwab M. Encyclopedia of Cancer. Springer, Berlin, Heidelberg. 2011. doi: 10.1007/978-3-642-16483-5_274.
13. Vasil’ev IS, Vasil’ev SA, Abushkin IA, et al. Angiogenez. Chelovek. Sport. Meditsina. 2017; 17(1). 36-45. (In Russ). doi: 10.14529/hsm170104.
14. Allahwala UK, Khachigian LM, Nour D, et al. Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc Res. 2020; 132: 104058. doi: 10.1016/j.mvr.2020.104058.
15. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular o2 tension. Proc Natl Acad Sci U S A. 1995; 92: 5510-5514
16. Shevchenko YuL, Borshchev GG. Stimulation of angiogenesis with endogenic growth factors. Vestnik Natsional’nogo mediko-khirurgicheskogo Tsentra im. N.I. Pirogova. 2018. 13(3): 96-102. (In Russ.) doi: 10.25881/bpnmsc.2018.73.55.022.
17. Cooke JP, Meng S. Vascular Regeneration in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol. 2020; 40(7): 1627-1634. doi: 10.1161/atvbaha.120.312862.
18. Liao LS, Bai YP. The dynamics of monocytes in the process of collateralization. Aging Med (Milton). 2019; 2(1): 50-55. doi: 10.1002/agm2.12054.
19. Jamaiyar A, Juguilon C, Dong F, et al. Cardioprotection during ischemia by coronary collateral growth. Am J Physiol Heart Circ Physiol. 2019; 316(1): H1-H9. doi: 10.1152/ajpheart.00145.2018.
20. Fung E, Helisch A. Macrophages in collateral arteriogenesis. Front Physiol. 2012; 3: 353. doi: 10.3389/fphys.2012.00353.
21. Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006; 10(1): 45-55. doi: 10.1111/j.1582-4934.2006.tb00290.x.
22. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch. 2000; 436: 257-270.
23. Merkus D, Muller-Delp J, Heaps CL. Coronary microvascular adaptations distal to epicardial artery stenosis. Am J Physiol Heart Circ Physiol. 2021; 320(6): H2351-H2370. doi: 10.1152/ajpheart.00992.2020.
24. Pries AR, Badimon L, Bugiardini R, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015; 36(45): 3134-3146. doi: 10.1093/eurheartj/ehv100.
25. Moberg A. Anastomoses between extracardiac vessels and coronary arteries. I. Via bronchial arteries. Post-mortem angiographic study in adults and newborn infants. Acta Radiol Diagn (Stockh). 1967; 6(2): 177-192. doi: 10.1177/028418516700600209.
26. Habib GB, Heibig J, Forman SA, Brown BG, Roberts R, Terrin ML, Bolli R; The TIMI Investigators. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. Circulation. 1991; 83: 739-746. doi: 10.1161/01.CIR.83.3.739.
27. Shevchenko YuL, Borshchev GG, Ulbashev DS. Long-term results of coronary bypass grafting supplemented with surgical stimulation of extracardiac myocardial vascularization in patients with diffuse coronary artery disease. Complex Issues of Cardiovascular Diseases. 2023; 12(1): 160-171. (In Russ.) doi: 10.17802/2306-1278-2023-12-1-160-171.
28. Meier P. The sword of Damocles: an illustrative example of the life-saving effect of the collateral circulation. J Invasive Cardiol. 2011; 23(3): E47-E48.
29. Fefer P, Knudtson ML, Cheema AN, et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am Coll Cardiol. 2012; 59(11): 991-997. doi: 10.1016/j.jacc.2011.12.007.
30. Zoll PM, Wessler S, Schlesinger MJ. Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation. 1951; 4(6): 797-815. doi: 10.1161/01.cir.4.6.797.
31. Niebauer J, Hambrecht R, Marburger C, et al. Impact of intensive physical exercise and low-fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol. 1995; 76(11): 771-775. doi: 10.1016/s0002-9149(99)80224-0.
32. Liu L, Gao L, Tan H, et al. Effect of different doses of atorvastatin on collateral formation in coronary artery disease patients with coronary atherosclerosis. Coron Artery Dis. 2022; 33(6): 473-478. doi: 10.1097/MCA.0000000000001148.
33. de Marchi SF, Streuli S, Haefeli P, et al. Determinants of prognostically relevant intracoronary electrocardiogram ST-segment shift during coronary balloon occlusion. Am J Cardiol. 2012; 110(9): 1234-1239. doi: 10.1016/ j.amjcard.2012.06.023.
34. Werner GS, Ferrari M, Betge S, Gastmann O, Richartz BM, Figulla HR. Collateral function in chronic total coronary occlusions is related to regional myocardial function and duration of occlusion. Circulation. 2001. 104: 2784-2790. doi: 10.1161/hc4801.100352.
35. Habib GB, Heibig J, Forman SA, Brown BG, Roberts R, Terrin ML, Bolli R. The TIMI Investigators. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. Circulation. 1991. 83: 739-746. doi: 10.1161/01.CIR.83.3.739.
36. Zoll PM, Wessler S, Schlesinger MJ. Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation. 1951; 4: 797-815. doi: 10.1161/01.CIR.4.6.797.
37. Fulton WF. Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and diseased hearts demonstrated by stereoarteriography. Scott Med J. 1963; 8: 420-434. doi: 10.1177/003693306300801102.
38. Von Haller A. First Lines of Physiology. 1 st American ed. Troy O.Penniman; 1803.
39. Hudson CL, Moritz AR, Wearn JT. The extracardiac anastomoses of the coronary arteries. J Exp Med. 1932; 56(6): 919-925. doi: 10.1084/jem.56.6.919.
40. Loukas M, Hanna M, Chen J, Tubbs RS, Anderson RH. Extracardiac coronary arterial anastomoses. Clin Anat. 2011; 24(2): 137-142. doi: 10.1002/ca.21088.
41. Picichè M. Noncoronary Collateral Myocardial Blood Flow: The Human Heart’s Forgotten Blood Supply. Open Cardiovasc Med J. 2015; 9: 105-113. doi: 10.2174/1874192401509010105.
42. Björk L. Angiographic demonstration of extracardial anastomoses to the coronary arteries. Radiology. 1966; 87(2): 274-277. doi: 10.1148/87.2.274.
43. Bigler MR, Seiler C. The Human Coronary Collateral Circulation, Its Extracardiac Anastomoses and Their Therapeutic Promotion. Int J Mol Sci. 2019; 20(15): 3726. doi: 10.3390/ijms20153726.
44. Seiler C, Stoller M, Pitt B, Meier P. The human coronary collateral circulation: development and clinical importance. Eur Heart J. 2013; 34(34): 2674-2682. doi: 10.1093/eurheartj/eht195.
45. Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007; 116(9): 975-983. doi: 10.1161/circulationaha.107.703959.
46. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985; 5(3): 587-592. doi: 10.1016/s0735-1097(85)80380-6.
47. Meier P, Schirmer SH, Lansky AJ, Timmis A, Pitt B, Seiler C. The collateral circulation of the heart. BMC Med. 2013; 11: 143. doi: 10.1186/1741-7015-11-143.
48. Pohl T, Seiler C, Billinger M, et al. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J Am Coll Cardiol. 2001; 38(7): 1872-1878. doi: 10.1016/ s0735-1097(01)01675-8.
49. Shevchenko YuL, Zayniddinov FA, Borshchev GG, et al. The quality of life of patients with coronary heart disease with diffuse coronary lesion at different times after CABG, supplemented by the YurLeon procedure. Vestnik Natsional’nogo mediko-khirurgicheskogo Tsentra im. N.I. Pirogova. 2021; 16(4): 30-35. (In Russ.) doi: 10.25881/20728255_2021_16_4_30.
50. Shevchenko YuL, Zayniddinov FA, Ulbashev DS. Stimulation of extracardial revascularization during coronary bypass surgery in patients with diffuse coronary artery disease. Avicenna bulletin. 2021; 23(3): 462-472. (In Russ.) doi: 10.25005/2074-0581-2021-23-3-462-472.
51. Patent RUS №2758024/05.03.2021. Shevchenko YuL. Sposob induktsii ehkstrakardial’noi revaskulyarizatsii miokarda u bol’nykh ishemicheskoi bolezn’yu serdtsa. (In Russ.)