Authors
Klimovsky S.D., Ghazaryan G.G., Krichman M.D.
City Clinical Hospital named after A.K. Yeramishantsev, Moscow
Abstract
The prevalence of intracranial aneurysms (IAs) in the general population is about 2–6%; their frequency as a cause of subarachnoid hemorrhage, according to various sources, is estimated at 10-38%. Endovascular intervention is the first-line treatment for both ruptured and unruptured IA, which is associated with a lower incidence of surgical complications and mortality compared with open neurosurgery. Endovascular specialists performing therapeutic interventions for IA need to have specialized theoretical and practical training, since the specific structure of the vascular bed, the delicacy of the anatomical region and the variability of the nature of the lesion determine the extremely high cost of error. In addition, interventions on intracranial vessels are performed independently by residents and interns least often. Printing three-dimensional models allows you to plan surgical intervention more accurately; carry out the selection of consumables for a specific vascular pathology; use the model as a guide during surgery. Moreover, it is a unique educational tool that enhances training in surgical and endovascular techniques through realistic anatomical representation and tactile experience. Three-dimensional modeling is a promising, actively developing area. Further research is required, aimed both at improving the method of making models and at reducing its cost, which will contribute to the wider use of this technology in the foreseeable future.
Keywords: intracranial aneurysms, endovascular intervention, three-dimensional modeling, 3D printing, training, planning.
References
1. Rinkel GJ, Djibuti M, Algra A, Gijn JV. Prevalence and risk of rupture of intracranial aneurysms. Stroke. 1998; 29: 251-6. doi: 10.1161/01.STR.29.1.251.
2. Ziai WC, Carhuapoma JR. Intracerebral Hemorrhage. Continuum (Minneap Minn). 2018; 24(6): 1603-1622. doi: 10.1212/CON.0000000000000672.
3. Darkwah Oppong M, Skowronek V, Pierscianek D, et al. Aneurysmal intracerebral hematoma: risk factors and surgical treatment decisions. Clin Neurol Neurosurg. 2018; 173: 1-7. doi: 10.1016/j.clineuro.2018.07.014.
4. Brinjikji W, Lanzino G, Kallmes DF, Cloft HJ. Cerebral aneurysm treatment is beginning to shift to low volume centers. J NeuroIntervent Surg. 2013; 6(5): 349-52. doi: 10.1136/neurintsurg-2013-010811.
5. Singh V, Gress DR, Higashida RT, et al. The learning curve for coil embolization of unruptured intracranial aneurysms. Am J Neuroradiol. 2002; 23: 768-71.
6. Consoli A, Renieri L, Mura R, et al. Five to ten years follow-up after coiling of 241 patients with acutely ruptured aneurysms. Intervent Neuroradiol. 2012; 18(1): 5-13. doi: 10.1177/159101991201800101.
7. Bairamian D, Liu S, Eftekhar B. Virtual reality angiogram vs 3-dimensional printed angiogram as an educational tool — a comparative study. Neurosurgery. 2019; 85(2): E343-E349. doi: 10.1093/neuros/nyz003.
8. Hull CW, Arcadia C: United States Patent US4575330A — Apparatus for production of three-dimensional objects by stereolithography. [URL].
9. Mankovich NJ, Samson D, Pratt W, et al. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am. 1994; 27(5): 875-889.2.
10. Kim GB, Lee S, Kim H, et al. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol. 2016; 17(2): 182-197. doi: 10.3348/kjr.2016.17.2.182.
11. Chae MP, Lin F, Spychal RT, et al. 3D-printed haptic “reverse” models for preoperative planning in soft tissue reconstruction: a case report. Microsurgery. 2015; 35(2): 148-53. doi:10.1002/micr.22293.
12. Choi JW, Kim N. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Arch Plast Surg. 2015; 42(3): 267-77. doi: 10.5999/aps.2015.42.3.267.
13. Bagaturia GO. Prospects for the use of 3D printing in planning surgical operations. Meditsina: Teoriya i praktika. 2016; 1(1): 26-35. (In Russ.)
14. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015; 347(6228): 1349-52. doi: 10.1126/science.aaa239.
15. O’Reilly M, Hof M, Friedman SD, et al. Simulating tissues with 3D-printed and castable materials. J Digit Imaging. 2020; 33(5): 1280-1291. doi: 10.1007/s10278-020-00358-6.
16. Torres I, De Luccia N. Artifcial vascular models for endovascular training (3D printing). Innov Surg Sci. 2018; 3(3): 225-234. doi: 10.1515/iss-2018-0020.
17. Garcia J, Yang ZL, Mongrain R, et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn. 2018; 4(1): 27-40. doi: 10.1136/bmjstel-2017-000234.
18. Popescu D, Zapciu A, Amza C, et al. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polymer Testing. 2018; 69: 157-66. doi: 10.1016/j.polymertesting.2018.05.020.
19. Maragiannis D, Jackson MS, Igo SR, et al. Functional 3D printed patient-specific modeling of severe aortic stenosis. J Am Coll Cardiol. 2014; 64: 1066-8. doi: 10.1016/j.jacc.2014.05.058.
20. Maragiannis D, Jackson MS, Igo SR, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015; 8: e003626. doi: 10.1161/circimaging.115.003626.
21. Ferrari E, Piazza G, Scoglio M, et al. Suitability of 3D printed root models for the development of transcatheter aortic root repair technologies. ASAIO J. 2019; 65(8): 874-881. doi: 10.1097/MAT.0000000000000903.
22. Stienen MN, Bartek J, Czabanka MA, et al. Neurosurgical procedures performed during residency in Europe preliminary numbers and time trends. Acta Neurochir (Wien). 2019; 161: 843-853. doi: 10.1007/ s00701-019-03888-3.
23. Langridge B, Momin S, Coumbe B, et al. Systematic review of the use of 3-dimensional printing in surgical teaching and assessment. J Surg Educ. 2018; 75: 209-221. doi: 10.1016/j.jsurg.2017.06.033.
24. Kimura T, Morita A, Nishimura K, et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009; 65: 719-25. doi: 10.1227/01.NEU.0000354350.88899.07.
25. Itagaki MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagnostic Interv Radiol. 2015; 21(4): 338-41. doi: 10.5152/dir.2015.14469.
26. Zammar SG, El Tecle NE, El Ahmadieh TY, et al. Impact of a vascular neurosurgery simulation based course on cognitive knowledge and technical skills in European neurosurgical trainees. World Neurosurg. 2015; 84: 197-201. doi: 10.1016/j.wneu.2014.12.001.
27. Jahnke P, Schwarz FB, Ziegert M, et al. A radiopaque 3D printed, anthropomorphic phantom for simulation of CT-guided procedures. Eur Radiol. 2018; 28(11): 4818-23. doi: 10.1007/s00330-018-5481-4.
28. Randazzo M, Pisapia J, Singh N, Thawani J. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016; 7: 801. doi: 10.4103/ 2152-7806.194059.
29. Martín-Noguerol T, Paulano-Godino F, Riascos RF, et al. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med. 2019; 7: 684. doi: 10.21037/atm. 2019.10.109.
30. Cobb MI-PH, Taekman JM, Zomorodi AR, et al. Simulation in neurosurgery a brief review and commentary. World Neurosurg. 2016; 89: 583-6. doi: 10.1016/j.wneu.2015.11.068.
31. Mashiko T, Otani K, Kawano R, et al. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015; 83: 351-61. doi: 10.1016/j.wneu.2013.10.032.
32. Namba K, Higaki A, Kaneko N, et al. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases. World Neurosurg. 2015; 84: 178-86. doi: 10.1016/j.wneu.2015.03.006.
33. Harris BD, Nilsson S, Poole CM. A feasibility study for using ABS plastic and a low-cost 3D printer for patient-specific brachytherapy mould design. Australas Phys Eng Sci Med. 2015; 38: 399-412. doi: 10.1007/ s13246-015-0356-3.
34. Thawani JP, Pisapia JM, Singh N, et al. Three dimensional printed modeling of an arteriovenous malformation including blood flow. World Neurosurg. 2016; 90: 675-83. e2. doi: 10.1016/j.wneu.2016.03.095.
35. Nagassa RG, McMenamin PG, Adams JW, et al. Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print Med. 2019; 5: 11. doi: 10.1186/s41205-019-0048-9.
36. McGuire LS, Fuentes A, Alaraj A. Three-dimensional modeling in training, simulation, and surgical planning in open vascular and endovascular neurosurgery: a systematic review of the literature. World Neurosurg. 2021; 154: 53-63. doi: 10.1016/j.wneu.2021.07.057.
37. Kaufmann R, Zech CJ, Takes M, Brantner P, et al. Vascular 3D printing with a novel biological tissue mimicking resin for patient-specific procedure simulations in interventional radiology: a feasibility study. J Digit Imaging. 2022; 35: 9-20. doi: 10.1007/s10278-021-00553-z.
38. Schicho K, Figl M, Seemann R, et al. Accuracy of treatment planning based on stereolithography in computer assisted surgery. Med Phys. 2006; 33(9): 3408-17. doi: 10.1118/1.2242014.
39. Weinstock P, Prabhu SP, Flynn K, et al. Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr. 2015; 16: 584-9. doi: 10.3171/2015.3.PEDS14677.
40. Hashimoto N, Nozaki K, Takagi Y, et al. Surgery of cerebral arteriovenous malformations. Neurosurg. 2007; 61(1): 375-87. doi: 10.1227/01.NEU. 0000255491.95944.EB.
41. Wurm G, Tomancok B, Pogady P, et al. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg. 2004; 100: 139-45. doi: 10.3171/jns.2004.100.1.0139.
42. Wurm G, Lehner M, Tomancok B, et al. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011; 18: 294-306. doi: 10.1177/ 1553350610395031.
43. Dong M, Chen G, Li J, et al. Three-dimensional brain arteriovenous malformation models for clinical use and resident training. Medicine (Baltimore). 2018; 97: e9516. doi: 10.1097/MD.0000000000009516.
44. Pelargos PE, Nagasawa DT, Lagman C, et al. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. J Clin Neurosci. 2017; 35: 1-4. doi: 10.1016/j.jocn.2016.09.002.
45. Kärkkäinen JM, Sandri G, Tenorio ER, et al. Simulation of endovascular aortic repair using 3D printed abdominal aortic aneurysm model and fluid pump. Cardiovasc Intervent Radiol. 2019; 42(11): 1627-34. doi: 10.1007/s00270-019-02257-y.
46. Hsu CY, Ghafari M, Alaraj A, et al. Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput Biol Med. 2017; 82: 29-39. doi: 10.1016/j.compbiomed.2017.01.012.
47. Moccia S, Momi ED, Hadji SE, Mattos LS. Blood vessel segmentation algorithms — review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed. 2018; 158: 71-91. doi: 10.1016/j.cmpb. 2018.02.001.