Authors
Samoylov A.N., Tumanova P.A.
Kazan State Medical University, Kazan
Abstract
Pharmacotherapy in the preoperative, intraoperative and postoperative periods remains the most important component of the treatment of complex retinal diseases. Improvements in surgical platforms, vitrectomy probes, and intraoperative imaging have expanded the capabilities of the vitreoretinal surgeon. Understanding and implementing pharmacological treatment strategies requires a focus on the preferences and experience of each individual surgeon. Ultimately, the goal of the surgeon is to improve visual and anatomical outcomes while minimizing risk.
Individual pharmacotherapy after vitrectomy remains an important component for optimizing long-term outcomes after surgery. As the field of vitreoretinal surgery continues to evolve, larger prospective studies will provide surgeons with additional tools to improve vision and change lives.
Continued advances in pharmacotherapy, including suprachoroidal drug delivery, sustained release devices, viral vector delivery, and new therapeutics, will rapidly impact clinical practice for the benefit of patients.
Keywords: рharmacotherapy, vitreoretinal surgery.
References
1. Bhagat N, Zarbin M. Recent innovations in medical and surgical retina. Asia Pac J Ophthalmol. 2015; 4(3): 171-179.
2. Hooper PL, Rao NA, Smith RE. Cataract extraction in uveitis patients. Surv Ophthalmol. 1990; 35(2): 120-144.
3. Scott RA, Haynes RJ, Orr GM, Cooling RJ, Pavesio CE, Charteris DG. Vitreous surgery in the management of chronic endogenous posterior uveitis. Eye (Lond). 2003; 17(2): 221-227.
4. Diabetic Retinopathy Vitrectomy Study Research Group. Two-year course of visual acuity in severe proliferative diabetic retinopathy with conventional management. Diabetic Retinopathy Vitrectomy Study Report №1. Ophthalmology. 1985; 92(4): 492-502.
5. Mason JO, Colagross CT, Haleman T, et al. Visual outcome and risk factors for light perception and no light perception vision after vitrectomy for diabetic retinopathy. Am J Ophthalmol. 2005; 140(2): 231-235.
6. Castillo-Velazquez J, Aleman I, Rush SW, Rush RB. Bevacizumab before diabetic vitrectomy : a clinical trial assessing 3 dosing amounts. Ophthalmol Retina. 2018; 2(10): 1010-1020.
7. Zhao X, Xia S, Chen Y. Antivascular endothelial growth factor agents pretreatment before vitrectomy for complicated proliferative diabetic retinopathy: A meta-analysis of randomized controlled trials. Br J Ophthalmol. 2018; 102(8): 1077-1085.
8. Eric L, Ross BA, Hutton DW, et al; Diabetic Retinopathy Clinical Research Network. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial. JAMA Ophthalmol. 2016; 134(8): 888-896.
9. Trese MT. Enzymatic vitreous surgery. Semin Ophthalmol. 2000; 15(2): 116-121.
10. Wong SC, Capone A. Microplasmin (Ocriplasmin) in pediatric vitreoretinal surgery: update and review. Retina. 2013; 33(2): 339-348.
11. Turgut B, Demir T, Catak O. The recommendations for pediatric vitreoretinal surgery. Adv Ophthalmol Vis Syst. 2019; 9(6): 142-145.
12. Peyman GA, Cheema R, Conway MD, Fang T. Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloids during pars plana vitrectomy. Retina. 2000; 20(5): 554-555.
13. Enaida H, Hata Y, Ueno A, et al. Possible benefits of triamcinolone-assisted pars plana vitrectomy for retinal diseases. Retina. 2003; 23(6): 764-770.
14. Floman N, Zor U. Mechanism of steroid action in ocular inflammation: inhibition of prostaglandin production. Invest Ophthalmol Vis Sci. 1977; 16(1): 69-73.
15. Artem'eva OV, Samojlov AN, ZHernakov SV. Opisanie opyta klinicheskogo primeneniya preparata Ozurdeks. Klinicheskaya oftal'mologiya (RMZH). 2013; 21(3): 104-108. (In Russ.)
16. Kim KT, Jang JW, Kang SW, et al. Vitrectomy combined with intraoperative dexamethasone implant for the management of refractory diabetic macular edema. Korean J Ophthalmol. 2019; 33: 249-258.
17. Jung YH, Lee Y. Efficacy of vitrectomy combined with an intraoperative dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 2019; 56: 691-696.
18. Lee DH, Kim YJ, Yoon YH. Minimally invasive microincision vitrectomy surgery with an intraoperative dexamethasone implant for refractory diabetic macular edema. Ophthalmologica. 2016; 235: 150-156.
19. Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008; 27(4): 331-371.
20. Ikagawa H, Yoneda M, Iwaki M, et al. Chemical toxicity of indocyanine green damages retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2005; 46(7): 2531-2539.
21. Rodrigues EB, Meyer CH, Kroll P. Chromovitrectomy: a new field in vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2005; 243(4): 291-293.
22. Kiilgaard JF, Nissen MH, la Cour M. An isotonic preparation of 1 mg/ml indocyanine green is not toxic to hyperconfluent ARPE19 cells, even after prolonged exposure. Acta Ophthalmol Scand. 2006; 84(1): 42-46.
23. Lee KL, Dean S, Guest S. A comparison of outcomes after indocyanine green and trypan blue assisted internal limiting membrane peeling during macular hole surgery. Br J Ophthalmol. 2005; 89(4): 420-424.
24. Gale JS, Proulx AA, Gonder JR, Mao AJ, Hutnik CM. Comparison of the in vitro toxicity of indocyanine green to that of trypan blue in human retinal pigment epithelium cell cultures. Am J Ophthalmol. 2004; 138(1): 64-69.
25. Enaida H, Hisatomi T, Hata Y, et al. Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina. 2006; 26(6): 631-636.
26. Sadaka A, Sisk RA, Osher JM, Duncan MK, Riemann CD. Intravitreal methotrexate infusion for proliferative vitreoretinopathy. Clin Ophthalmol. 2016;10:1811-1817.
27. Falavarjani KG, Modarres M, Hadavandkhani A, Moghaddam AK. Intra-silicone oil injection of methotrexate at the end of vitrectomy for advanced proliferative diabetic retinopathy. Eye (Lond). 2015;29(9):1199-1203.
28. Artem'eva OV, Samojlov AN, ZHernakov SV. Proliferativnaya vitreoretinopatiya: sovremennye predstavleniya ob etiologii i patogeneze. Vestnik oftal'mologii. 2014; 130(3): 67-71. (In Russ.)
29. Maturi R. Subretinal tissue plasminogen activator (TPA) injection for the treatment of acute subretinal hemorrhages associated with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004;45(13):3137.
30. Kamei M, Estafanous M, Lewis H. Tissue plasminogen activator in the treatment of vitreoretinal diseases. Semin Ophthalmol. 2000;15(1):44-50.
31. Ping F, Hai-Ying J, Qi Zhang, Xin Li Pei-Quan Z. Tissue plasminogen activator-assisted vitrectomy in the early treatment of acute massive suprachoroidal hemorrhage complicating cataract surgery. Int J Ophthalmol. 2018;11(1):170-171.
32. Bojko EV, Danilichev VF, Kol'cova SV. Optimizaciya dozy nativnoj i immobilizovannoj prourokinazy dlya intravitreal'nogo vvedeniya i rassasyvaniya eksperimental'nogo krovoizliyaniya v steklovidnuyu kameru glaza. Boevye povrezhdeniya organa zreniya: Tez. dokl. SPb.: VmedA, 1993. S.79. (In Russ.)
33. Davis J, Gregori NZ, MacLaren RE, Lam BL. Surgical technique for subretinal gene therapy in humans with inherited retinal degeneration. Retina. 2019;39:S2-S8.