DOI: 10.25881/20728255_2023_18_3_121

Authors

Shengelia L.D., Donakanyan S.A., Fatulaev Z.F., Sanakoev M.K., Konshina M.O., Bockeria L.A.

A.N. Bakoulev Scientific Center for Cardiovascular Surgery, Moscow

Abstract

Coronary artery bypass grafting is the main method of surgical myocardial revascularization in patients with multivessel atherosclerotic lesions of coronary arteries. The main objective of this surgery is to restore blood flow in coronary arteries, prevent the occurrence of myocardial infarction, improve prognosis and quality of life.

Currently, in coronary bypass grafting, the internal thoracic artery, the radial artery, and the large subcutaneous vein of the lower limb are used as conduits. In the last decade, the use of the radial artery as an autoarterial graft has been gaining popularity. The main advantages are the wall structure, adequate caliber, surface location in the soft tissues of the upper extremity. However, due to morphofunctional features and anatomical position, successful use of the radial artery requires knowledge of surgical anatomy to avoid complications in the postoperative period. According to a number of authors, in patients with ischemic heart disease, when using the radial artery during coronary bypass grafting, better long-term results are achieved in the form of anastomosis viability, compared with the use of the large saphenous vein.

Keywords: coronary artery bypass grafting, radial artery, myocardial revascularization.

References

1. Bockeria LA, Golukhova EZ, Alekyan BG, et al. Long-term results of various methods of myocardial revascularization in patients with coronary heart disease. Creative cardiology. 2011; 5(1). (In Russ.)

2. Golukhova EZ. Coronary artery bypass grafting and percutaneous coronary intervention in stable ischemic heart disease: the current stage. Creative cardiology. 2019; 13(2): 91-7. (In Russ.) doi: 10.24022/ 1997-3187-2019-13-2-91-97.

3. Loop F, Lytle B, Cosgrove D, Stewart R, Goormas- tic M, Williams G, et al. Influence of the internal mammary artery graft on 10-year survival and other cardiac events. N Engl J Med. 1986; 314: 1-6.

4. Acar C, Jebara V, Portoghese M, Beyssen B, Pagny J, Grare P, et al. Revival of the radial artery for coronary artery bypass grafting. Ann Thorac Surg. 1992; 54: 652-60.

5. Tatoulis J, Buxton B, Fuller J, Meswani M, Theodore S, Powar N, et al. Long term patency of 1,108 radial arterial coronary angiograms over 10 years. Ann Thorac Surg. 2009; 88: 23-9.

6. Gaudino M, Tondi P, Benedetto U, Milazzo V, Flore R, Glieca F, et al. Radial artery as a coronary artery bypass conduit. 20-Year results. J Am Coll Cardiol. 2016; 68: 603-10.

7. Tatoulis J. The radial artery in coronary surgery. Indian Journal of Thoracic and Cardiovascular Surgery. 2018; 60: 234-244. doi: 10.1007/ s12055-018-0694-3.

8. Tatoulis J, Buxton B, Fuller J. Long-term patency of 1108 radial arterialcoronary angiograms over 10 years. Ann Thorac Surg. 2009; 88: 23.

9. Zakargaev RK, Alshibaya MD, Cheishvili ZM, et al. Arterial myocardial revascularization (clinical observation). XXVIII All-Russian Congress of Cardiovascular Surgeons. Abstracts of reports. 2022. 92 р. (In Russ.)

10. Kovalenko OA, Alshibaya MD, Musin DE, Krymov KV. Arterial myocardial revascularization (clinical studies). Bulletin of the A.N. Bakoulev Scientific Center for Cardiovascular Surgeryof the Russian Academy of Sciences. Cardiovascular diseases. 2021; 22: 50. (In Russ.)

11. Jeremy R, Leonard M, Ahmed A, et al. The radial artery: Results and technical considerations. J Card Surg. 2018; 1: 6. doi: 10.1111/jocs.13533.

12. Kosoyrov AK, Belousova GN, Drosdova MM, Matushechkin SV. Arterial system. Microcirculation. 2-nd edition. SPBGMU publishing. 2006. (In Russ.)

13. Berdajs D, Turina MI. Operative Anatomy of the Heart. Springer; 2011.

14. Von H. Icones Anatomicae Fasciculus VI. Gottingae: A. Vandenhoek. 1753.

15. Loukas M, Holdman D, Holdman S, Morphol F. Anatomical variations of the superficial and deep palmar arches. 64: 78-83.

16. Gellman H, Botte M, Shankwiler J, Gelberman R. Arterial Patterns of the Deep and Superficial Palmar Arches. Clinical orthopaedics and related research. 383: 41-46.

17. Srimani P, Saha A. Basic and Applied Anatomy Comprehensive study of superficial palmar arch. Italian journal of anatomy and embryology. 2018; 123: 320-332.

18. Coleman S, Anson B. Arterial patterns in the hand based upon a study of 650 specimens. Surg Gynecol Obst. 113: 409-424.

19. Gajisin S, Zbrodowski A. Local vascular contribution of the superficial palmar arch. Acta Anat. 1993; 147: 248-251.

20. Ikeda A, Ugawa A, Kazihara Y, Hamada N. Arterial patterns in the hand based on three-dimen- sional analysis of 220 cadaver hands. J Hand Sur. 1988; 13: 501-509.

21. Res J, Singla R, Kaur N, Dhiraj G. Prevalence of the persistant median artery. 2012; 6(9): 1454-7. doi: 10.7860/JCDR/2012/4218.2531.

22. Michał P, Patrick Z, Popieluszko A, Zayachkowski P, Pękala B, Krzysztof H. The surgical anatomy of the superficial and deep palmar arches. An international journal of surgical recinstruction. 2018; 71: 1577-1592. doi: 10.1016/j.bjps.2018.08.014.

23. Gokhroo R, Bisht D, Gupta S, Kishor K, Ranwa B. Palmar arch anatomy: Ajmer Working Group classification. 2016; 24: 31-6.

24. Singh S, Lazarus L, De Gama B, Satyapal K. An anatomical investigation of the superficial and deep palmar arches. Folia Morphol (Warsz). 2017; 76: 219-25.

25. Bilbo J, Stern P. The first dorsal interosseous muscle: an anatomic study. J Hand Surg Am. 1986; 11: 748-50.

26. Loukas M, Holdman D, Holdman S. Anatomical variations of the superficial and deep palmar arches. Folia Morphol (Warsz). 2005; 64: 78-83.

27. Pooja D, Mahajan A, Vasudeva N, Mishra S. Variations in the Pattern of the Deep Palmar Arch of the Hand and Its Surgical Importance. 2022; 14: 20873. doi: 10.7759/cureus.20873.

28. Aoun J, Hattar L, Dgayli K, Wong G, Bhat T. Update on complications and their management during transradial cardiac catheterization. Expert Rev Cardiovasc Ther. 2019; 17: 741-51. doi: 10.1080/14779072.2019.1675510.

29. Allen E. Thromboangiitis obliterans: methods of diagnosis of chronic occlusive arterial lesions distal to the wrist with illustrative cases. Am J Med Sci. 1929; 2: 1-8.

30. Lim L, Galvin S, Javid M, Matalanis G. Should the radial artery be used as a bypass graft following radial access coronary angiography. Interact Cardiovasc Thorac Surg. 2014; 18: 219-24.

31. Ruzieh M, Moza A, Bangalore B, SchwannTA, Tinkel J. Effectsoftransradial catheterization on patency rates of radial arteries used as a conduit for coronary bypass. Heart Lung Circ. 2017; 26: 296-300.

32. Conklin L, Ferguson E, Reardon M. The Technical Aspects of Radial Artery Harvesting. Tex Heart Inst J. 2001; 28: 129-31.

33. Tatoulis J, Buxton B, Fuller J. Long-term patency of 1108 radial arterialcoronary angiograms over 10 years. Ann Thorac Surg. 2009; 88: 23-9.

34. Tatoulis J, Buxton B, Fuller J. Patencies 2127 of arterial to coronary conduits over 15 years. Ann Thorac Surg. 2004; 77: 93-101.

35. Tatoulis J. The radial artery: An important component of multiarterial coronary surgery and considerations for its optimal harvest. 2021; 5: 46-55. doi: 10.1016/j.xjtc.2020.10.042.

36. Dubovoy AV, Ovsyannikov KS, Guzhin VE, et al. The use of bypass high-flow extra-intracranial arterial bypass surgery in the pathology of cerebral and brachiocephalic arteries: technical features and results of surgery. Questions of neurosurgery. 2017. (In Russ.)

37. Fouly M. Endoscopic versus open harvesting of radial artery for CABG. The Cardiothoracic Surgeon. 2020; 28: 2. doi: 10.1186/s43057-019-0012-x.

For citation

Shengelia L.D., Donakanyan S.A., Fatulaev Z.F., Sanakoev M.K., Konshina M.O., Bockeria L.A. Radial artery in coronary surgery: features of surgical anatomy and techniques of harvesting for coronary artery bypass grafting. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(3):121-127. (In Russ.) https://doi.org/10.25881/20728255_2023_18_3_121