DOI: 10.25881/20728255_2023_18_1_139

Authors

Fursova A.Z. 1, 2, Zubkova M.Yu.1, 2, Gamza Yu.A.1

1 Novosibirsk State Medical University, Novosibirsk

2 Novosibirsk State Region Hospital, Novosibirsk

Abstract

Neurodegenerative diseases (NDD) are disorders characterized by a progressive loss of selectively vulnerable populations of neurons, accompanied by a break in connections between parts of the nervous system, imbalance of genes and the delivery of appropriate neurotransmitters, leading to memory impairment, movement disorders and cognitive impairment. Pathogenetic mechanisms are associated with accumulation of abnormal proteins (extracellular amyloid β-protein, α-synuclein protein etc) as well as with autoimmune inflammation. The signs of these changes in retina can be considered as markers of neurodegenerative process. The exact etiology of NDD has not been fully understood yet, but the role of impaired cerebral geodynamics, which determines the development and aggravates the progression of neurodegeneration, has been proven. The structure and microcirculation of retina have similar features with cerebral blood vessels and morphological changes of retina and brain are identical. Since NDD are more often diagnosed at advanced stages, it is necessary to identify useful biomarkers that can be used for early diagnosis and monitoring of the degree of neuronal degeneration. In cases of NDD, there is a decreasing of density of retinal vessels of superficial and deep capillary plexus, as well as expansion of the foveolar avascular zone, the severity of this changes varies with the stage of the disease. The using of optical coherence tomography in the angiography mode as a non-invasive, fast, informative and affordable research method based on modern capabilities of multimodal imaging, seems to be the most relevant and in demand in clinical practice.

Keywords: Optical coherence tomography, neurodegenerative diseases, Alzheimer disease, Parkinson disease, multiple sclerosis, glaucoma.

References

1. Larson EB, Langa KM. The rising tide of dementia worldwide. Lancet. 2008; 372: 430-432. doi: 10.1016/S0140-6736(08)61003-X.

2. Farkas E, Luiten PGM. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog. Neurobiol. 2001; 64: 575-611. doi: 10.1016/S0301-0082(00)00068-X.

3. De La Torre JC. Critically attained threshold of cerebral hypoperfusion: Can it cause Alzheimer’s disease? Ann. N. Y. Acad. Sci. 2000; 903: 424-436. doi: 10.1111/j.1749-6632.2000.tb06394.x.

4. Di Marco LY, Venneri A, Farkas E, et al. Vascular dysfunction in the pathogenesis of Alzheimer’s disease — A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 2015; 82: 593-606. doi: 10.1016/j.nbd.2015.08.014.

5. Juurlink BHJ. The Evidence for Hypoperfusion as a Factor in Multiple Sclerosis Lesion Development. Mult. Scler. Int. 2013; 2013: 598093. doi: 10.1155/2013/598093.

6. Varga AW, Johnson G, Babb JS, et al. White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J. Neurol. Sci. 2009; 282: 28-33. doi: 10.1016/j.jns.2008.12.036.

7. Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013; 47: 601-623. doi:10.1146/annurev-genet-110711-155524.

8. Kamińska J, Koper OM, Piechal K, et al. Multiple sclerosis — etiology and diagnostic potential. Postepy Hig Med Dosw (Online). 2017; 71(0): 551-563. doi: 10.5604/01.3001.0010.3836.

9. Riva I, Legramandi L, Rulli E, et al. Vision-related quality of life and symptom perception change over time in newly-diagnosed primary open angle glaucoma patients. Sci. Rep. 2019; 9: 1-11. doi: 10.1038/s41598-019-43203-9.

10. Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr. Opin. Pharmacol. 2013; 13: 43-49. doi: 10.1016/j.coph.2012.10.001.

11. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002; 21: 359-393. doi: 10.1016/S1350-9462(02)00008-3.

12. Cheung CY, Ikram MK, Chen C, et al. Imaging retina to study dementia and stroke. Prog. Retin. Eye Res. 2017; 57: 89-107. doi: 10.1016/j.preteyeres.2017.01.001.

13. Ferri CP, Prince M, Brayne C, Brodaty H, et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 2005; 366: 2112-2117. doi: 10.1016/S0140-6736(05)67889-0.

14. Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog. Retin. Eye Res. 2013; 32: 1-21. doi: 10.1016/j.preteyeres. 2012.08.003.

15. den Haan J, Verbraak FD, Visser PJ, et al. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 2017; 6: 162-170.

16. Yu JG, Feng YF, Xiang Y, et al. Retinal nerve fiber layer thickness changes in Parkinson disease: A meta-analysis. PLoS ONE. 2014; 9: e85718. doi: 10.1371/journal.pone.0085718.

17. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 7: 2011. 137-152.

18. Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000. 54: S4-S9.

19. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998. 88: 1337-1342.

20. Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 2018; 102: 233-237. doi: 10.1136/bjophthalmol-2017-310476.

21. Grewal DS, Polascik BW, Hoffmeyer G.C, et al. Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer’s disease: A twin discordance report. Ophthalmic Surg. Lasers Imaging Retin. 2018; 49: 440-444. doi: 10.3928/23258160-20180601-09.

22. Zhang YS, Zhou N, Knoll BM, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s Disease on optical coherence tomography angiography. PLoS ONE. 2019; 14: e0214685. doi: 10.1371/journal.pone.0214685.

23. Yoon SP, Thompson AC, Polascik BW, et al. Correlation of OctA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease. Ophthalmic Surg. Lasers Imaging Retin. 2019; 50: 709-718. doi: 10.3928/23258160-20191031-06.

24. O’Bryhim BE, Apte RS, Kung N, et al. Association of Preclinical Alzheimer Disease with Optical Coherence Tomographic Angiography Findings. JAMA Ophthalmol. 2018; 136: 1242-1248. doi: 10.1001/jamaophthalmol. 2018.3556.

25. Zabel P, Kaluzny JJ, Wilkosc-Debczynska M, et al. Comparison of retinal microvasculature in patients with Alzheimer’s disease and primary open-angle glaucoma by optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2019; 60: 3447-3455. doi: 10.1167/iovs.19-27028.

26. Van De Kreeke JA, Nguyen HT, Konijnenberg E, et al. Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br. J. Ophthalmol. 2019; 104: 157-161. doi: 10.1136/bjophthalmol-2019-314127.

27. Jiang H, Wei Y, Shi Y, et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J. Neuro Ophthalmol. 2018; 38: 292-298. doi: 10.1097/WNO.0000000000000580.

28. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006. 5: 525-535.

29. Moisan F, Kab S, Mohamed F, et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016. 87: 952-957.

30. Haaxma CA, Bloem BR, Borm GF, et al. Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007. 78: 819-824.

31. Guan J, Pavlovic D, Dalkie N, et al. Vascular degeneration in parkinsons disease. Brain Pathol. 2013; 23: 154-164. doi: 10.1111/j.1750-3639. 2012.00628.x.

32. Price DL, Rockenstein E, Mante M, et al. Longitudinal live imaging of retinal alpha-synuclein::GFP deposits in a transgenic mouse model of Parkinson’s disease/dementia with Lewy bodies. Sci Rep. 2016; 6: 29523.

33. Kwapong WR, Ye H, Peng C,et al. Retinal microvascular impairment in the early stages of Parkinson’s disease. Investig. Ophthalmol. Vis. Sci. 2018; 59: 4115-4122. doi: 10.1167/iovs.17-23230.

34. Shi C, Chen Y, Kwapong WR, et al. Characterization By Fractal Dimension Analysis of the Retinal Capillary Network in Parkinson Disease. Retina. 2019 doi: 10.1097/IAE.0000000000002641.

35. Feucht N, Maier M, Lepennetier G, et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult. Scler. J. 2019; 25: 224-234. doi: 10.1177/1352458517750009.

36. Wang X, Jia Y, Spain R,et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br. J. Ophthalmol. 2014; 98: 1368-1373. doi: 10.1136/bjophthalmol-2013-304547.

37. Lanzillo R, Cennamo G, Criscuolo C, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult. Scler. J. 2018; 24: 1706-1714. doi: 10.1177/1352458517729463.

38. Ulusoy M.O, Horasanlı B, Işık-Ulusoy S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol. Res. 2020; 42: 319=326. doi: 10.1080/01616412.2020.1726585.

39. Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: An optical coherence tomography angiography study. Eye. 2020; 34: 771-778. doi: 10.1038/s41433-019-0746-y.

40. Bourne RRA, Jonas JB, Bron AM, et al. Vision Loss Expert Group of the Global Burden of Disease Study.Br J Ophthalmol. 2018 May; 102(5): 575-585

41. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11): 2081-90. doi: 10.1016/j.ophtha. 2014.05.013.

42. Triolo G, Rabiolo A, Shemonski N.D, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Investig. Ophthalmol. Vis. Sci. 2017; 58: 5713-5722. doi: 10.1167/iovs.17-22865.

43. Toshev AP, Schuster AK, Hassan SN, et al. Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma. J Glaucoma.2019; 28(3): 243-251. doi: 10.1097/IJG.0000000000001184.

44. Yip VCH, Wong HT, Yong VKY, et al. Optical Coherence Tomography Angiography of Optic Disc and Macula Vessel Density in Glaucoma and Healthy Eyes. J Glaucoma.2019; 28(1): 80-87. doi: 10.1097/IJG.00000000000101125.

45. Penteado RC, Zangwill LM, Daga FB, et al. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma. J Glaucoma. 2018; 27(6): 481-489. doi:10.1097/IJG.0000000000000964.

46. Takusagawa HL, Liu L, Ma KN, et al. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology. 2017; 124: 1589-1599. doi: 10.1016/j.ophtha.2017.06.002.

47. Spaide RF. Measurable Aspects of the Retinal Neurovascular Unit in Diabetes, Glaucoma, and Controls. Am J Ophthalmol. 2019; 207: 395-409. doi: 10.1016/j.ajo.2019.04.035.

48. Richter GM, Madi I, Chu Z, et al. Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography J Glaucoma. 2018; 27(3): 281-290. doi: 10.1097/IJG.0000000000000888.

49. Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Ophthalmology. 2018; 125(4): 578-587. doi: 10.1016/j.ophtha.2017.10.029.

For citation

Fursova A.Z., Zubkova M.Yu., Gamza Yu.A. OCT-angiography in neurodegenerative diseases examination. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(1):139-144. (In Russ.) https://doi.org/10.25881/20728255_2023_18_1_139