Authors
Bocharov A.V.1, 2, Gruzdeva A.A.2, 3, Popov L.V.4, Khokhlov A.L.3
1 Republican Clinical Hospital, Vladikavkaz
2 Kostroma Regional Clinical Hospital named after E.I. Korolev, Kostroma
3 Yaroslavl State Medical University, Yaroslavl
4 Pirogov National Medical and Surgical Center, Moscow
Abstract
Aims: To compare the incidence of liver damage in non-ST-segment elevation acute coronary syndrome patients with and without novel coronavirus infection (COVID-19).
Materials and methods: the study included 150 patients with acute coronary syndrome without ST-segment elevation who underwent successful myocardial revascularization by coronary artery stenting, which were divided into 2 groups. The COVID group included 70 patients with acute coronary syndrome without ST-segment elevation and a moderate course of new coronavirus infection detected during hospitalization by the polymerase chain reaction (nasopharyngeal and oropharyngeal swabs). The COVID-free group consisted of 80 with acute coronary syndrome without ST-segment elevation patients. Diagnosis of liver damage was carried out taking into account biochemical markers, namely: an increase in the level of transaminases, bilirubin, albumin.
Results: analysis of the results showed a higher incidence of increased transaminase activity in the group of patients with new coronavirus infection: Δ Alt, ME 20.7 versus 6.0 (p = 0.004), Δ AST, ME 24.0 versus 13.0 (p = 0.04) in similar clinical groups by gender, comorbidity, cardiovascular therapy.
Conclusions: the use of additional therapy included in the treatment regimen for COVID-19 infection against the background of standard ACS therapy in patients with acute coronary syndrome without ST segment elevation after percutaneous coronary interventions and new coronavirus infection (SARS-CoV-2, COVID-19) compared with patients with acute coronary syndrome without ST-segment elevation after percutaneous coronary interventions, it causes an increase in alanine aminotransferase almost 3.5 times and an increase in liver aspartate aminotransferase almost 2 times, p = 0.004 and p = 0.04, respectively.
Keywords: COVID-19, acute coronary syndrome, liver dysfunction, aminotransferases, percutaneous coronary interventions.
References
1. Zvyaginceva TD, Chernobay AI. Medicinal liver damage. NSAID-associated hepatopathies: the relevance of the problem and modern therapeutic approaches. Ukr. Med. J. 2014; 99(1): 80-85 (In Russ).
2. Drapkina OM, Fadeeva MV. Statins and the liver. Briefly about the main thing. Russian Med. J. 2014; 22(6): 428-432 (In Russ).
3. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 Expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. doi:10.1101/2020.02.03.931766.
4. Xu J, Helfand B. Genetic risk score linked with younger age diagnosis of prostate cancer. Oncology Times. 2020; 42(6): 8, 36. doi:10.1097/01.COT.0000658832.18056.12.
5. Boettler T, Newsome PN, Mondelli MU, Matitic M, Cordeo E, Cornberg M, et al. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Rep. 2020; 2(3): 100113. doi:10.1016/j.jhepr.2020.100113.
6. Fan Z, Chen L, Li J, Tian C, Zhang Y, Huang S, Liu Z, Cheng J. Clinical Features of COVID-19-Related Liver Damage. 2020. doi:10.2139/ssrn.3546077.
7. Chen N, Zhou M, DongX, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507-13. doi:10.1016/S0140-6736(20)30211-7.
8. Ong J, Young BE, Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020; 69(6): 1144-45. doi:10.1136/gutjnl-2020-321051.
9. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-62. doi:10.1016/S0140-6736(20)30566-3.
10. Gubergrits NB, Lareva NV, Klochkov AE. Statiny v gepatologii. Dobro ili zlo? M.: Forte print. 2014. (In Russ).
11. Drapkina OM, Dubolazova IuV. Statiny i pechen’: tupik ili novye gorizonty? Russian Med. J. 2009; 17(4): 210-215. (In Russ).
12. Maev IV, Polunina TE. Lekarstva i pechen’. Farmateka. 2013; 2: 80-88. (In Russ).
13. Kaziulin AN, Pereiaslova EV. Lekarstvennaia gepatotoksichnost’ v klinicheskoi praktike. Med. sovet. 2012; 9: 37-45. (In Russ).
14. Alegret M, Silvestre JS. Pleotropic eff ects of statins and related pharmacological experimental approaches. Methods Find Exp Clin Pharmacol. 2006; 28(9): 627-56. doi:10.1358/mf.2006.28.9.1003573.
15. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006; 80: 565-581. doi:10.1016/j.clpt.2006.09.003.
16. Naci H, Brugts J, Ades T. Comparative Tolerability and Harms of Individual Statins. A Study-Level Network Meta-Analysis of 246 955 Participants From 135 Randomized, Controlled Trials. Circ Cardiovasc Qual Outcomes. 2013; 6(4): 390-399. doi:10.1161/CIRCOUTCOMES.111.000071.
17. Kromer A, Moosmann B. Statin-induced liver injury involves cross-talk between cholesterol and selenoprotein biosynthetic pathways. Mol Pharmacol. 2009; 75(6): 1421-1429. doi:10.1124/mol.108.053678.
18. Kostapanos MS, Milionis HJ, Elisaf MS. Rosuvastatin-associated adverse effects and drug-drug interactions in the clinical setting of dyslipidemia. Am J Cardiovasc Drugs. 2010; 10(1): 11-28. doi:10.2165/13168600-000000000-00000.
19. Browning JD. Statins and hepatic steatosis: perspectives from the Dallas Heart Study. Hepatology. 2006; 44(2): 466-471. doi:10.1002/hep.21428.
20. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020; 9(1): 727-732. doi: 10.1080/22221751.2020.1746199.
21. Ivashkin VT, Sheptulin AA, Zolnikova OYu, Okhlobystin AV, Poluektova EA, Trukhmanov AS, et al. New coronavirus infection (COVID-19) and digestive system. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020; 30(3): 7-13. doi:10.22416/1382-4376-2020-30-3-7. (In Russ).
22. Ilchenko LYu, Nikitin IG, Fedorov IG. COVID-19 and liver damage. The Russian Archives of Internal Medicine. 2020; 10(3): 188-197. doi: 10.20514/2226-6704-2020-10-188-197. (In Russ).