DOI: 10.25881/20728255_2021_16_4_145

Authors

Ronzina I.A., Sheremet N.L., Zhorzholadze N.V.

Research Institute of Eye Diseases, Moscow

Abstract

In ophthalmic practice, there are diagnostically difficult cases when standard research methods do not allow identifying the cause of a decrease in visual functions. As a rule, in patients with transparent optical media of the eye, it is necessary to differentiate the pathology of the perceiving (sensory) part of the visual system and its proximal parts (visual pathways, visual cortex). These two levels of damage suggest different groups of diseases, differing in the set and urgency of the necessary diagnostic measures, the prognosis of visual functions and life prognosis. Rational use of modern highly informative methods of morphological and functional diagnostics allows to reduce the time of patient examination and to establish a reasonable diagnosis. The article presents a clinical example of differential diagnosis of the causes of visual impairment using the latest structural and functional research methods of the visual system.

Keywords: Macula; optical coherence tomography; mf-ERG; case report.

References

1. Padungkiatsagul T, Leung LS, Moss HE. Retinal Diseases that Can Masquerade as Neurological Causes of Vision Loss. Current Neurology and Neuroscience Reports. 2020; 20(11): 1-14. doi: 10.1007/s11910-020-01071-1.

2. Yap GH, et al. Clinical value of electrophysiology in determining the diagnosis of visual dysfunction in neuro-ophthalmology patients. Documenta Ophthalmologica. 2015; 131(3): 189-196. doi: 10.1007/s10633-015-9515-9.

3. Meigen T. Electrophysiology in ophthalmology. Der Ophthalmologe. 2015; 112(6): 533-44. doi: 10.1007/s00347-015-0055-1.

4. Robson AG, et al. ISCEV guide to visual electrodiagnostic procedures. Documenta Ophthalmologica. 2018; 136(1): 1-26. doi: 10.1007/s10633-017-9621-y.

5. Whatham AR, et al. The value of clinical electrophysiology in the assessment of the eye and visual system in the era of advanced imaging. Clinical and Experimental Optometry. 2014; 97(2): 99-115. doi: 10.1111/cxo.12085.

6. Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Experimental eye research. 2015; 141: 164-170. doi: 10.1016/j.exer.2015.05.008.

7. Vollmer LA, Shechtman DL, Woods AD, Pizzimenti JJ. Use of multifocal ERG and OCT for diagnosing Stargardt’s disease. Clin Exp Optom. 2011; 94(3): 309-313. doi: 10.1111/j.1444-0938.2010.00527.x.

8. Meunier I, Bouvet-Drumare I, Zanlonghi X, Mauget-Faysse M, Arndt C, Hamel C, Affortit A, Defoort-Dhellemmes S, Puech B. Spectral-Domain Optical Coherence Tomography in Hereditary Retinal Dystrophies. Selected Topics in Optical Coherence Tomography. 2012; 147-170. doi: 10.1016/j.pedneo.2014.02.007.

9. Shamshinova AM. Electroretinography in ophthalmology. M.: Medica, 2009. (In Russ).

10. Gnezditskiy VV, Shamshinova AM. Experience in the use of evoked potentials in clinical practice. M.: MBN, 2001. (In Russ).

For citation

Ronzina I.A., Sheremet N.L., Zhorzholadze N.V. Modern methods of diagnosis in determining the level of visual pathway defect. Bulletin of Pirogov National Medical & Surgical Center. 2021;16(4):145-147. (In Russ.) https://doi.org/10.25881/20728255_2021_16_4_145