Authors
Dimertsev A.V., Zuev A.A.
Pirogov National Medical and Surgical Center, Moscow
Abstract
Primary tumors of the central nervous system (CNS) account for about 2% of all human tumors. Ongoing epidemiological studies confirm an annual increase in the occurrence of both primary tumors and metastatic brain lesions, and, accordingly, the need for surgical treatment increases. Most often, malignant glial formations are located in the region of motor zones, requiring both surgery and adjuvant therapy. Deficiencies in motor functions directly reflect the functional status of the patient, which can adversely affect the selection of patients for chemo-radiation therapy. Preoperative preparation, including the study of the specifics of the spatial relationship of cortical motor zones, the corticospinal tract and the tumor, allows you to plan all stages of surgical treatment in advance, reduce the time of surgery, its volume, and, as a result reduce the risk of irreversible neurological disorders. Currently, there are various neuroimaging methods that allow assessing the size and configuration of volumetric formation in a three-dimensional format (MRI), localizing motor patterns on the surface of the cerebral cortex (fMRI, TMS, PET, MEG), assessing the state of the corticospinal tract (MR-tractography). However, these techniques are auxiliary and cannot be used separately. Intraoperatively, various combinations of neurophysiological monitoring methods, neuronavigation systems, ultrasound, intraoperative CT, MRI, metabolic navigation, etc., are used as neuroimaging. To date, there is no consensus on the volume of preoperative training, the technique of surgery of tumors of motor zones, intraoperative monitoring.
Materials and methods. Found and analyzed 51 articles on queries: brain tumor, brain mapping, extent of resection, functional mapping, fiber tracking, motor area tumor, gliomas, motor pathways with the maximum number of observations over the past 20 years, using PubMed, Cochrane library, MedLine and available search tools on the Internet.
Keywords: brain tumor, brain mapping, extent of resection, functional mapping, fiber tracking, motor area tumor, gliomas, motor pathways.
References
1. Dyachenko AA, Subbotina AV, Izmajlov TR, Krasil`nikov AV, Val`kov MYu. Epidemiologiya pervichnyx opuxolej golovnogo mozga. Vestnik RNCzRR. 2013; 13. (In Russ).
2. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020; 22(12 Suppl 2): iv1-iv96. doi:10.1093/neuonc/noaa200.
3. Nasxletashvili DR, Banov SM, Bekyashev AX, Golanov AV, Dolgushin MB, Kobyakov GL, et al. Prakticheskie rekomendacii po lekarstvennomu lecheniyu metastaticheskix opuxolej golovnogo mozga. Zlokachestvenny`e opuxoli. 2016; 4(2): 85–96. (In Russ).
4. Zigiotto L, Annicchiarico L, Corsini F, et al. Effects of supra-total resection in neurocognitive and oncological outcome of high-grade gliomas comparing asleep and awake surgery. J Neurooncol. 2020; 148(1): 97-108. doi:10.1007/s11060-020-03494-9.
5. Rossetto M, Ciccarino P, Lombardi G, Rolma G, Cecchin D, Della Puppa A. Surgery on motor area metastasis. Neurosurg Rev. 2016; 39(1): 71-78. doi:10.1007/s10143-015-0648-9.
6. Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009; 6(3): 478-486. doi:10.1016/j.nurt.2009.04.005.
7. Spena G, Schucht P, Seidel K, et al. Brain tumors in eloquent areas: A European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis. Neurosurg Rev. 2017; 40(2): 287-298. doi:10.1007/s10143-016-0771-2.
8. Aleksandrov MV, Ulitin AYu, Chernyj VS, Toporkova OA. Intraoperacionnyj monitoring kak element sistemy nejrofiziologicheskogo obespecheniya vysokotexnologichnoj nejroxirurgicheskoj pomoshhi. Vestnik Severo-Zapadnogo gosudarstvennogo medicinskogo universiteta im. I.I. Mechnikova. 2018; 10(2): 92-98. (In Russ).
9. Delev D, Send K, Wagner J, et al. Epilepsy surgery of the rolandic and immediate perirolandic cortex: surgical outcome and prognostic factors. Epilepsia. 2014; 55(10): 1585-1593. doi:10.1111/epi.12747.
10. Sarubbo S, Tate M, De Benedictis A, et al. A normalized dataset of 1821 cortical and subcortical functional responses collected during direct electrical stimulation in patients undergoing awake brain surgery. Data Brief. 2019; 28: 104892. Published 2019 Dec 5. doi:10.1016/j.dib.2019.104892.
11. Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology. 2007; 245(2): 367-384. doi:10.1148/radiol.2452060445.
12. Conti Nibali M, Rossi M, Sciortino T, et al. Preoperative surgical planning of glioma: limitations and reliability of fMRI and DTI tractography. J Neurosurg Sci. 2019; 63(2): 127-134. doi:10.23736/S0390-5616.18.04597-6.
13. Ulmer JL, Hacein-Bey L, Mathews VP, et al. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery. 2004; 55(3): 569-581. doi:10.1227/01.neu.0000134384.94749.b2.
14. Konovalov AN, Potapov AA, Gavrilov AG, et al. Sovremenny`e texnologii i klinicheskie issledovaniya v nejroxirurgii. A.N. Konovalov, editor. M.: Andreeva, 2012. T.1. P.55-111. (In Russ).
15. Mikuni N, Okada T, Enatsu R, et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007; 106(4): 593-598. doi:10.3171/jns.2007.106.4.593.
16. Duffau H. The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien). 2012; 154(4): 569-574. doi:10.1007/s00701-012-1275-7.
17. Forster MT, Hattingen E, Senft C, Gasser T, Seifert V, Szelényi A. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery. 2011; 68(5): 1317-1325. doi:10.1227/NEU.0b013e31820b528c.
18. Maier-Hein KH, Neher PF, Houde JC, et al. Author Correction: The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2019; 10(1): 5059. Published 2019 Nov 4. doi:10.1038/s41467-019-12867-2.
19. Krieg SM. Brain Mapping — Indications and Techniques by Alfredo Quinones-Hinojosa et al. Thieme Publishers New York. Stuttgart. Acta Neurochir (Wien). 2020; 162(7): 1725. doi:10.1007/s00701-020-04312-x.
20. Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005; 27(2): 357-367. doi:10.1016/j.neuroimage.2005.04.008.
21. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006; 24(3): 478-488. doi:10.1002/jmri.20683.
22. Picht T, Schmidt S, Brandt S, et al. Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011; 69(3): 581-588. doi:10.1227/NEU.0b013e3182181b89.
23. Krieg SM, Shiban E, Buchmann N, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012; 116(5): 994-1001. doi:10.3171/ 2011.12.JNS111524.
24. Coburger J, Musahl C, Henkes H, Horvath-Rizea D, Bittl M, Weissbach C, Hopf N. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurgical Review. 2012; 36(1): 65-76. doi:10.1007/s10143-012-0413-2.
25. Sack AT, Linden DE. Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res Brain Res Rev. 2003; 43(1): 41-56. doi:10.1016/s0165-0173 (03)00191-7.
26. Ille S, Sollmann N, Hauck T, et al. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg. 2015; 123(1): 212-225. doi:10.3171/2014.9.JNS14929.
27. Schupper AJ, Rao M, Mohammadi N, et al. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front Neurol. 2021; 12: 682151. Published 2021 Jun 16. doi:10.3389/fneur.2021.682151.
28. Duffau H, Capelle L, Denvil D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003; 98(4): 764-778. doi:10.3171/jns.2003.98.4.0764.
29. Sieśkiewicz A, Łysoń T, Mariak Z, Rogowski M. Chirurgia endoskopowa zatok przynosowych i podstawy czaszki ze wspomaganiem neuronawigacja: porównanie systemów optycznych i elektromagnetycznych [Neuronavigation in transnasal endoscopic paranasal sinuses and cranial base surgery: comparison of the optical and electromagnetic systems]. Otolaryngol Pol. 2009; 63(3): 256-260. doi:10.1016/S0030-6657(09)70118-0.
30. Ganslandt O, Behari S, Gralla J, Fahlbusch R, Nimsky C. Neuronavigation: concept, techniques and applications. Neurol India. 2002; 50(3): 244-255.
31. Keles GE, Lamborn KR, Berger MS. Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery. 2003; 53(3): 556-564. doi:10.1227/01.neu.0000080949.44837.4c.
32. Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL. Brain shift in neuronavigation of brain tumors: A review. Med Image Anal. 2017; 35: 403-420. doi:10.1016/j.media.2016.08.007.
33. Altieri R, Melcarne A, Di Perna G, et al. Intra-Operative Ultrasound: Tips and Tricks for Making the Most in Neurosurgery. Surg Technol Int. 2018; 33: 353-360.
34. Vasil`ev SA. Ultrazvukovaya navigaciya v xirurgii opuxolej golovnogo mozga. Chast` 1: Vasil`ev SA, Zuev AA. Nejroxirurgiya. 2010; 3: 9-13. (In Russ).
35. Le Roux PD, Berger MS, Wang K, Mack LA, Ojemann GA. Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. J Neurooncol. 1992; 13(2): 189-198. doi:10.1007/BF00172770.
36. Savello AB. Kompleksnoe differencirovannoe primenenie metodov pred- i intraoperacionnoj vizualizacii, nejronavigacii i rentgenoxirurgii na e`tape xirurgicheskogo lecheniya pacientov s vnutricherepny`mi opuxolyami [Avtoreferat dissertation]/ SPb; 2008. (In Russ).
37. Kobyakov G, Amanov R, Korshunov A, Loshakov V, Pronin I, Golanov A, Eliseeva N, Arxipova N, Urakov S. Neoperabel`nye gliomy: vozmozhnosti lecheniya. Materialy IV s`ezda nejroxirurgov Rossii. M. 18-22 iyunya 2006. Р.177. (In Russ).
38. Valdés PA, Leblond F, Kim A, et al. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg. 2011; 115(1): 11-17. doi:10.3171/2011.2.JNS101451.
39. Specchia FMC, Monticelli M, Zeppa P, et al. Let Me See: Correlation between 5-ALA Fluorescence and Molecular Pathways in Glioblastoma: A Single Center Experience. Brain Sci. 2021; 11(6): 795. Published 2021 Jun 16. doi:10.3390/brainsci11060795.
40. Szelényi A, Senft C, Jardan M, et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol. 2011; 122(7): 1470-1475. doi:10.1016/j.clinph.2010.12.055.
41. Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel). 2021; 13(11): 2803. Published 2021 Jun 4. doi:10.3390/cancers13112803.
42. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993; 32(2): 219-226. doi:10.1227/00006123-199302000-00011.
43. Shiban E, Krieg SM, Haller B, et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg. 2015; 123(3): 711-720. doi:10.3171/2014.10.JNS141289.
44. Yamaguchi F, Ten H, Higuchi T, et al. An intraoperative motor tract positioning method in brain tumor surgery: technical note. J Neurosurg. 2018; 129(3): 576-582. doi:10.3171/2017.5.JNS162978.
45. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014; 120(5): 1015-1024. doi:10.3171/2014.1.JNS13909.
46. Gogos AJ, Young JS, Morshed RA, et al. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg. 2020; 1-10. doi:10.3171/2020.3.JNS193434.
47. Pinson H, Van Lerbeirghe J, Vanhauwaert D, Van Damme O, Hallaert G, Kalala JP. The supplementary motor area syndrome: a neurosurgical review. Neurosurg Rev. 2021; 10: 10143-021-01566-6. doi:10.1007/s10143-021-01566-6.
48. Altieri R, Raimondo S, Tiddia C, et al. Glioma surgery: From preservation of motor skills to conservation of cognitive functions. J Clin Neurosci. 2019; 70: 55-60. doi:10.1016/j.jocn.2019.08.091.
49. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007; 107(3): 488-494. doi:10.3171/JNS-07/09/0488.