DOI: 10.25881/20728255_2021_16_2_105

Authors

Kulikov D.A.1,2, Krasulina К.А.1, Glazkova Р.А.1, Kovaleva Y.А.1, Glazkov А.А.1, Barsukov I.А.1

1 Moscow Regional Research and Clinical Institute («MONIKI»)

2 Moscow Region State University, Mytishchi

Abstract

Diabetic polyneuropathy is one of the most common chronic complications of diabetes mellitus, characterized by damage to nerve fibers and leading to reduced employability and quality of life. It can contribute to dysregulation of blood flow, including skin microcirculation. These deviations can be detected using the method of laser Doppler flowmetry, based on recording changes in the frequency of a laser beam as it passes through tissue and is reflected from moving blood cells. The identification of skin perfusion abnormalities may be important for understanding the pathophysiology of nerve fiber and vascular lesions in diabetes mellitus. The aim of this review is to examine the relationship between changes in skin microcirculation and diabetic polyneuropathy. The first part of the review is devoted to the study of skin microcirculation at rest (without the use of functional tests) in patients with diabetic polyneuropathy. The original studies published from 1980 to the present, which are listed in the PubMed database, are reviewed. A number of articles show that the presence of diabetic polyneuropathy is associated with changes in skin microcirculation (tendency to increase baseline perfusion and decrease amplitude of microvascular vasomotions) measured by laser Doppler flowmetry. This may be useful to better understanding the pathophysiology of diabetic polyneuropathy.

Keywords: diabetes mellitus, diabetic neuropathies, skin, microcirculation, laser-Doppler flowmetry.

References

1. Riandini T, Wee HL, Khoo EYH, et al. Functional status mediates the association between peripheral neuropathy and health-related quality of life in individuals with diabetes. Acta Diabetol. 2018; 55(2): 155-164. doi: 10.1007/s00592-017-1077-8.

2. Dedov II, Shestakova MV, Mayorov AY, editors. Standards of specialized diabetes care. Мoscow; 2019. (In Russ). doi: 10.14341/DM221S1.

3. Vinik AI. Diabetic Sensory and Motor Neuropathy. N Engl J Med. 2016; 374(15): 1455-1464. doi: 10.1056/nejmcp1503948.

4. Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care. 2017; 40(1): 136-154. doi: 10.2337/dc16-2042.

5. Kasalová Z, Prázný M, Skrha J. Relationship between peripheral diabetic neuropathy and microvascular reactivity in patients with type 1 and type 2 diabetes mellitus — neuropathy and microcirculation in diabetes. Exp Clin Endocrinol Diabetes. 2006; 114(2): 52-57. doi: 10.1055/s-2006-923895.

6. Grover M, Makkar R, Sehgal A, et al. Etiological Aspects for the Occurrence of Diabetic Neuropathy and the Suggested Measures. Neurophysiology. 2020; 52(2): 159-168. doi: 10.1007/s11062-020-09865-2.

7. Tomešová J, Gruberova J, Lacigova S, et al. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: Relationship of diabetic neuropathy and skin microcirculation. Diabetes Technol Ther. 2013; 15(11): 968-975. doi: 10.1089/dia.2013.0083.

8. Silva I, Teixeira A, Oliveira J, et al. Endothelial dysfunction, microvascular damage and ischemic peripheral vasculopathy in systemic sclerosis. Clin Hemorheol Microcirc. 2017; 66(2): 117-130. doi: 10.3233/CH-150044.

9. Krupatkin AI, Sidorov VV, editors. Lazernaya dopplerovskaya floumetriya mikrotsirkulyatsii krovi. Moscow: Meditsina; 2005. (In Russ).

10. Rogatkin DA. Fizicheskie osnovy sovremennykh opticheskikh metodov issledovaniya mikrogemodinamiki in vivo. Lektsiya. Meditsinskaya fizika. 2017; 76(4): 75-93. (In Russ).

11. Hijazi MM, Buchmann SJ, Sedghi A, et al. Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci. 2020; 41(7): 1685-1696. doi: 10.1007/s10072-020-04293-w.

12. Camargo CP, Gemperli R. Endothelial Function in Skin Microcirculation. In: Endothelium and Cardiovascular Diseases: Vascular Biology and Clinical Syndromes. Elsevier; 2018: 673-679. doi: 10.1016/B978-0-12-812348-5.00047-7.

13. Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Anim Model Exp Med. 2018; 1(1): 7–13. doi: 10.1002/ame2.12001.

14. Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron. 2017; 93(6): 1296-1313. doi: 10.1016/j.neuron.2017.02.005.

15. Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol Med. 2018; 24(1): 59. doi: 10.1186/s10020-018-0060-3.

16. Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018; 12(3): 455-462. doi: 10.1016/j.dsx.2017.12.029.

17. Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018; 833: 472-523. doi: 10.1016/j.ejphar.2018.06.034.

18. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018; 108: 656-662. doi: 10.1016/j.biopha.2018.09.058.

19. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018; 9(6): 1239-1254. doi: 10.1111/jdi.12833.

20. Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982; 22(1): 9-15. doi: 10.1007/BF00253862.

21. Jörneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995; 38(4): 474-480. doi: 10.1007/bf00410286.

22. Lal C, Unni SN. Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. Med Biol Eng Comput. 2015; 53(6): 557-566. doi: 10.1007/s11517-015-1266-y.

23. Netten PM, Wollersheim H, Thien T, Lutterman JA. Skin microcirculation of the foot in diabetic neuropathy. Clin Sci. 1996; 91(5): 559-565. doi: 10.1042/cs0910559.

24. Nabuurs-Franssen MH, Houben AJHM, Tooke JE, Schaper NC. The effect of polyneuropathy on foot microcirculation in Type II diabetes. Diabetologia. 2002; 45(8): 1164-1171. doi: 10.1007/s00125-002-0872-z.

25. Jan Y-K, Liao F, Cheing GLY, et al. Differences in skin blood flow oscillations between the plantar and dorsal foot in people with diabetes mellitus and peripheral neuropathy. Microvasc Res. 2019; 122: 45-51. doi: 10.1016/j.mvr.2018.11.002.

26. Dunaev AV, Novikova IN, Zherebcova AI, et al. Analiz fiziologicheskogo razbrosa parametrov mikrotsirkulyatorno-tkanevykh sistem. Biotekhnosfera. 2013; 5(29): 44-53. (in Russ).

27. Reminy K, Hue O, Antoine-Jonville S. Effect of warm environment on the skin blood flow response to food intake. Int J Hyperth. 2020; 37(1): 836-842. doi: 10.1080/02656736.2020.1788174.

28. Tesselaar E, Dernroth DN, Farnebo S. Acute effects of coffee on skin blood flow and microvascular function. Microvasc Res. 2017; 114: 58-64. doi: 10.1016/j.mvr.2017.06.006.

29. Fine I, Kaminsky AV, Shenkman L. A new sensor for stress measurement based on blood flow fluctuations. In Dynamics and Fluctuations in Biomedical Photonics XIII. Proc SPIE Int Soc Opt Eng. 2016;9 707: 970705. doi: 10.1117/12.2212866.

30. Lapitan DG, Rogatkin DA. Functional studies on blood microcirculation system with laser Doppler flowmetry in clinical medicine: problems and prospects. Almanac of Clinical Medicine. 2016; 44(2): 249-259. (In Russ). doi: 10.18786/2072-0505-2016-44-2-249-259.

31. Sorelli M, Francia P, Bocchi L, et al. Assessment of cutaneous microcirculation by laser Doppler flowmetry in type 1 diabetes. Microvasc Res. 2019; 124: 91-96. doi: 10.1016/j.mvr.2019.04.002.

32. Bagno A, Martini R. Wavelet analysis of the Laser Doppler signal to assess skin perfusion. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2015; 2015-Novem: 7374-7377. doi: 10.1109/EMBC.2015.7320095.

33. Sun P-C, Kuo C-D, Chi L-Y, et al. Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes. Diabetes Vasc Dis Res. 2013; 10(3): 270-276. doi: 10.1177/1479164112465443.

34. Sun P-C, Chen C-S, Kuo C-D, et al. Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction. Microvasc Res. 2012; 83(2): 243-248. doi: 10.1016/J.MVR.2011.06.002.

35. Meyer MF, Rose CJ, Hülsmann JO, et al. Impairment of cutaneous arteriolar 0.1 Hz vasomotion in diabetes. Exp Clin Endocrinol Diabetes. 2003; 111(2): 104-110. doi: 10.1055/s-2003-39238.

36. Lefrandt JD, Bosma E, Oomen PHN, et al. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy. Diabetologia. 2003; 46(1): 40-47. doi: 10.1007/s00125-002-1004-5.

37. Rogatkin DA. Est' li nauchnaya informatsiya v rezul'tatakh izmerenii metodom LDF? Lazer-Inform. 2015; 556(13): 1-6. (in Russ).

38. Kulikov DA, Glazkov AA, Kovaleva YA, et al. Prospects of Laser Doppler flowmetry application in assessment of skin microcirculation in diabetes. Sakharnyy diabet. 2017; 20(4): 279-285. (in Russ). doi: 10.14341/DM8014.

39. Watkins PJ, Edmonds ME. Sympathetic nerve failure in diabetes. Diabetologia. 1983; 25(2): 73–77. doi: 10.1007/BF00250890.

40. Deegan AJ, Wang RK. Microvascular imaging of the skin. Phys Med Biol. 2019; 64(7): 07TR01. doi: 10.1088/1361-6560/ab03f1.

For citation

Kulikov D.A., Krasulina К.А., Glazkova Р.А., Kovaleva Y.А., Glazkov А.А., Barsukov I.А. Laser Doppler flowmetry in the assessment of skin microcirculatory disorders in patients with diabetic polyneuropathy. Part 1. Bulletin of Pirogov National Medical & Surgical Center. 2021;16(2):105-109. (In Russ.) https://doi.org/10.25881/20728255_2021_16_2_105