Авторы
Шевченко Ю.Л., Борщев Г.Г.
Национальный медико-хирургический Центр им. Н.И. Пирогова, Москва
Аннотация
Цель обзора литературы — анализ влияния различных эндогенных факторов роста на стимуляцию ангиогенеза. Рассмотрены вопросы регулирования процесса неоваскулогенеза в организме. Подобно рассмотрены: сосудистый эндотелиальный фактор роста (VEGF), фактор роста фибробластов (FGF), трансформирующий фактор роста (TGFp), фактор роста гепатоцитов (HGF), урокиназа. Подчеркнута роль витаминов в неоангиогенезе. Приведены исследования по применению факторов стимуляции ангиогенеза в клинической практике — «терапевтический ангиогенез».
Ключевые слова: ангиогенез, сосудистый эндотелиальный фактор роста (VEGF), фактор роста фибробластов (FGF), трансформирующий фактор роста (TGFp), фактор роста гепатоцитов (HGF), урокиназа, терапевтический ангиогенез.
Список литературы
1. Бокерия Л.А., Георгиев Г.П., Голухова Е.З. Возможности использования генных и клеточных технологий для лечения сердечно-сосудистых заболеваний. // Бюллетень НЦССХ им. Бакулева РАМН “Сердечно-сосудистые заболевания. Креативная кардиология Новые технологии в диагностике и лечении заболеваний сердца”. 2004. № 3. С.
2. Бочков П.Н., Константинов Б.А., Гавриленко А.В. Генно-инженерные технологии в лечении хронической ишемии нижних конечностей. ;
3. Гавриленко А.В., Воронов Д.А., Бочков Н.П. Комплексное лечение пациентов с хронической ишемией нижних конечностей с использованием генных индукторов ангиогенеза: ближайшие и отдаленные результаты // Клеточная трансплантология и тканевая инженерия. 2011. Т. 6. № 3. С.
4. Парфенова Е.В., Ткачук В.А. Перспективы генной терапии сердечнососудистых заболеваний // Вопросы медицинской химии. 2000. Т. 46. № 3. С.
5. Петрова Л.В., Кушлинский Н.Е., Ильина Л.В. Фактор роста эндотелия сосудов как показатель гипоксии тканей, его возможная роль в патогенезе плоского лишая слизистой оболочки рта // Вестник дерматологии и венерологии. 2004. № 5. С.
6. Boodhwani M., Voisine P., Ruel M., Sodha N.R., Feng J., Xu S.H., Bianchi C., and Sellke F.W. Comparison of vascular endothelial growth factor and fibroblast growth factor-2 in a swine model of endothelial dysfunction // Eur J Cardiothorac Surg. 2008. Vol. 33. No. 4. pp.
7. Busso N., Masur S.K., Lazega D., Waxman S., and Ossowski L. Induction of cell migration by prourokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells // The Journal of Cell Biology. 1994. No. 126. pp.
8. Carmeliet P. Angiogenesis in health and disease // Nat Med. 2003. Vol. 9. pp.
9. Conejo-Garcia J.R., Benencia F., Courreges M.C., Kang E., Mohamed-Hadley A., Buckanovich R.J., Holtz D.O., Jenkins A., Na H., Zhang L., et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A // Nat Med. 2004. Vol. 10. No. 9. pp.
10. Detillieux K.A., Sheikh F., Kardami E., and Cattini P.A. Biological activities of fibroblast growth factor-2 in the adult myocardium // Cardiovasc Res. 2003. Vol. 57. No. 1. pp.
11. Ferrara N. Role of vascular enthelial growth factor in the regulation of angiogenesis. // Kidney International. 1999. Vol. 56. pp.
12. Folkman J. Tumor angiogenesis: therapeutic implications // N Engl J Med. 1971. No. 285. pp.
13. Fraineau S., Monvoisin A., Clarhaut J., Talbot J., Simonneau C., Kanthou C., and Benzakour O. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and SHP2- dependent manner // Blood. 2012. No. 120. pp.
14. Freedman S.B., Jeffrey Isner M. Therapeutic Angiogenesis for Coronary Artery Disease. REview. // Ann.Intern.Med. 2002. Vol. 132. pp.
15. Fuchs S., Dib N., Cohen B.M., Okubagzi P., Diethrich E.B., Campbell А., and Macko J. A randomized, double-blind, placebo- controlled, multicenter, pilot study of the safety and feasibility of catheter- based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery diseasе. // Catheter Cardiovasc Interv. Sep 2006. Vol. 68. No. 3. pp.
16. Fumihiro S., Yoshiaki T., Junya A., Iekushi K., Dosaka N., Yokoi T., Koibuchi N., Kusunoki H., Aizawa Y., and Morishita R. Hepatocyte Growth Factor, but not Vascular Endothelial Growth Factor, Attenuates Angiotensin
17. Grines C.L., Watkins M.W., Helmer G., Penny W., Brinker J., Marmur J.D., West A., Rade J.J., Marrott P., Hammond H.K., and Engler R.L. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. // Circulation. Mar 2002. Vol. 105. No. ll. pp.
18. Grines C.L., Watkins M.W., Mahmarian J.J., Iskandrian A.E., Rade J.J., Marrott P., Pratt C., and Kleiman N. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. // J Am Coll Cardiol. Oct 2003. Vol. 42. No. 8. pp.
19. Heldin C.H., Miyazono K., and ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins // Nature. 1997. No. 390. pp.
20. Helisch A., Schaper W. Arteriogenesis: the development and growth of collateral arteries. // Microcirculation. 2003. Vol. 10. pp.
21. Henry T.D., Annex B.H., McKendall G.R., Azrin M.A., Lopez J.J., Giordano F.J., Shah P.K., Willerson J.T., Benza R.L., Berman D.S., et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenes. // Circulation. 2003. Vol. 107. pp. 1359 —1365.
22. Henry T.D., Grines C.L., Watkins M.W., Dib N., Barbeau G., Moreadith R., Andrasfay T., and Engler R.L. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. // J Am Coll Cardiol. Sep 2007. Vol. 50. No. ll. pp.
23. House S.L., Bolte C., Zhou M., Doetschman T., Klevitsky R., Newman G., and Schultz J.J. Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia // Circulation. 2003. Vol. 108. No. 25. pp.
24. Ikeuchi M., Tsutsui H., Shiomi T., Matsusaka H., Matsushima S., Wen J., Kubota T., and Takeshita A. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction // Cardiovasc Res. 2004. No. 64. pp. 526 —535.
25. Isner J.M., Vale P., Douglas W., Symes J., Losordo D.W., and Asahara T. Angiogenesis and cardiovascular disease. // Dialogues in Cardiovascular Medicine. 2001. Vol. 6. No. 3.
26. Kardami E., Detillieux К., Ma X., Jiang Z., Santiago J.J., Jimenez S.K., and Cattini P.A. Fibroblast growth factor-2 and cardioprotection // Heart Fail Rev. 2007. Vol. 12. No. 3. pp.
27. Khurana R., Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease // Trends Cardiovasc Med. 2003. No. 13. pp.
28. Komi Y., Sogabe Y., Ishibashi N., Sato Y., Moriwaki H., Shimokado K., and Kojima S. Acyclic retinoid inhibits angiogenesis by suppressing the MAPK pathway // Lab Invest.. 2010. Vol. 90. No. 1. pp.
29. Koolwijk P., van Erck M.G., de Vree W.J., Vermeer M.A., Weich H.A., Hanemaaijer R., and van Hinsbergh V.W. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity // The Journal of Cell Biology. 1996. Vol. 132. No. 6. pp.
30. Lei L., Zhou R., Zheng W., Christensen L.P., Weiss R.M., and Tomanek R.J. Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart // Circulation. 2004. Vol. 110. No. 7. pp.
31. Massague J. Type beta transforming growth factor from feline sarcoma virus-transformed rat cells. Isolation and biological properties // J Biol Chem. 1984. No. 259. pp.
32. Matsubara K., Matsumoto H., Mizushina Y., Lee J.S., and Kato N. Inhibitory effect of pyridoxal 5’-phosphate on endothelial cell proliferation, replicative DNA polymerase and DNA topoisomerase. // Int J Mol Med. 2003. Vol. 12. No. 1. pp.
33. Matsubara K., Mori M., Matsuura Y., and Kato N. Pyridoxal 5’-phosphate and pyridoxal inhibit angiogenesis in serum-free rat aortic ring assay // Int J Mol Med. 2001. Vol. 8. No. 5. pp.
34. Matsumoto K., Nakamura T. Hepatocyte growth factor: Renotropic role and potential therapeutics for renal diseases // Kidney Int. 2001. No. 59. pp.
35. Motohiro K., Yukio K., Toshikazu N., and Yuichi S. Efficient Extraction by the Liver Governs Overall Elimination of Hepatocyte Growth Factor in Rats // Farmakology. 1999. No. 290. pp.
36. Muinck E.D., Simons M. Re-evaluating therapeutic neovascularization. // J Mol Cell Cardiol. 2004. Vol. 36. pp.
37. Naoki K., Koichi N., Kuniaki N., Morishita R., Kaneda Y., Uenoyama M., Ikeda T., and Fujikawa K. Nonviral Gene Transfer of Human Hepatocyte Growth Factor Improves Streptozotocin-Induced Diabetic Neuropathy in Rats // Diabetes. 2005. No. 54. pp.
38. Ohno T., Yuge T., Kariyazono H., Igarashi H., Joh-o K., Kinugawa N., Kusuhara K., and Hara T. Serum hepatocyte growth factor combined with vascular endothelial growth factor as a predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. // Eur J Pediatr. Feb 2002. Vol. 161. No. 2. pp.
39. Ono K., Matsumori A., Shioi T., Furukawa Y., and Sasayama S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model // Circulation. 1995. No. 1. pp.
40. Palmen M., Daemen M.J., De Windt L.J., Willems J., Dassen W.R., Heeneman S., Zimmermann R., Van Bilsen M., and Doevendans P.A. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism // J Am Coll Cardiol. 2004. Vol. 44. No. 5. pp.
41. Prager G.W., Breuss J.M., Steurer S., Mihaly J., and Binder B.R. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells // Blood. 2004. Vol. 103. No. 3. pp.
42. Rahman S., Patel Y., Murray J., Patel K.V., Sumathipala R., Sobel M., and Wijelath E.S. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells // BMC Cell Biol. 2005. No. 6. pp.
43. Ribatti D. History of research on tumor angiogenesis. Netherlands: Springer, 2009. 125 pp.
44. Roberts A.B., Anzano M.A., Lamb L.C., Smith J.M., Frolik C.A., Marquardt H., Todaro G.J., and Sporn M.B. Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF // Nature. 1982. No. 295. pp.
45. Ruwhof C., van Wamel A.E., Egas J.M., and van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts // Mol Cell Biochem. 2000. No. 208. pp.
46. Sellke F.W., Wang S.Y., Friedman M., Harada K., Edelman E.R., Grossman W., and Simons M. Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation // Am J Physiol. 1994. Vol. 267. No. 4. pp.
47. Shi Y., Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus // Cell. 2003. No. 113. pp.
48. Shumacher B., Pecher P., and von Specht B.U. Induction of neoangiogenesis in ischemic myocardium by human growth factors: First clinical results of a new treatment of coronary heart disease. // Circulation. 1998. Vol. 97. No. 7. pp.
49. Soeki T., Tamura Y., Shinohara H., Tanaka H., Bando K., and Fukuda N. Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. // Cardiolog. 2000. Vol. 93. No. 3. pp.
50. Solomatina M., Plekhanova O., Men’shikova M., Ratner E., Tkachuk V., and Parfenova E. Urokinase Increases the Content and Activity of Matrix Metalloproteinases 2 and 9 during in Vivo Constrictive Arterial Remodeling // Bulletin of Experimental Biology and Medicine. 2005. Vol. 139. No. 3. pp.
51. Song H., Kwon К., Lim S., Kang S.M., Ko Y.G., Xu Z., Chung J.H., Kim B.S., Lee H., Joung B., et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions // Mol Cells. 2005. Vol. 19. No. 3. pp.
52. Suzuki H., Murakami M., Shoji M., Iso Y., Kondo T., Shibata M., Ezumi H., Hamazaki Y., Koba S., and Katagiri T. Hepatocyte growth factor and vascular endothelial growth factor in ischaemic heart disease. // Coron Artery Dis. Jul 2003. Vol. 14. No. 4. pp.
53. Svet-Moldavsky G.J., Chimishkyan K.L. Tumor angiogenesis factor for revascularization in ischemia and myocardial infarction // Lancet. 1977. No. 1. pp.
54. Tamura К., Nakajima H., Rakue H., Sasame A., Naito Y., Nagai Y., and Ibukiyama C. Elevated circulating levels of basic fibroblast growth factor and vascular endothelial growth factor in patients with acute myocardial infarction. // Jpn Circ J. May 1999. Vol. 63. No. 5. pp.
55. Thornton A.D., Ravn P., Winslet M., and Chester K. Angiogenesis inhibition with bevacizumab and the surgical management of colorectal cancer // Br J Surg. Dec 2006. Vol. 93. No. 12. pp.
56. Ueda H., Nakamura T., Matsumoto K., Sawa Y., Matsuda H., and Nakamura T. A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats // Cardiovasc Res. 2001. No. 51. pp.
57. Vatner S.F. FGF induces hypertrophy and angiogenesis in hibernating myocardium // Circ Res. 2005. Vol. 96. No. 7. pp.
58. Yasuda S., Goto Y., Baba T., Satoh T., Sumida H., Miyazaki S., and Nonogi H. Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function // J Am Coll Cardiol. 2000. No. 36. pp.
59. Zhang M., Volpert. O., Shi Y., and Bouck N. Maspin is an angiogenesis inhibitor // Nature Medicine. 2000. Vol. 1. pp.
60. Zheng W., Seftor E.A., Meininger C.J., Hendrix M.J., and Tomanek R.J. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. // Am J Physiol, Heart Circ Physiol. 2001. No. 280. pp. H909-17.