Авторы
Чепурной А.Г., Шугушев З.Х., Максимкин Д.А.
Российский университет дружбы народов, Москва
Аннотация
Представлен анализ современных исследований, посвященных денервации почечных артерий у больных артериальной гипертензией. Освещаются патофизиологические особенности повышения эффективности процедуры, согласно которым целесообразно выполнять пролонгированные абляции в стволе почечной артерии, ветвях второго и третьего порядка и в добавочных ветвях диаметром более 3 мм. Кроме того, показано, что увеличение числа точек абляции повышает вероятность попадания радиочастотного воздействия на участок афферентных и эфферентных нервных волокон. Представлены современные технологические разработки, которые позволяют провести интраоперационное картирование расположения нервных волокон в адвентиции почечных артерий. Благодаря этому появляется возможность проведения селективной денервации почечных артерий, тем самым, за счет снижения количества неэффективных точек абляции, можно увеличить восприимчивость к оперативному лечению артериальной гипертензии и повысить частоту эффективных вмешательств.
Ключевые слова: денервация почечных артерий, артериальная гипертензия.
Список литературы
1. Page IH, Heuer GJ. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest. 1935;14(1):27–30. doi: 10.1172/JCI100652.
2. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25(5):628–633. doi: 10.1002/ca.21280..
3. Sakakura K, Ladich E, Cheng Q, et al. Anatomic assessment of sympathetic periarterial renal nervesin man. Am J Coll Cardiol. 2014;64(7):635–643. doi: 10.1016/j.jacc.2014.03.059.
4. Esler M. Renal denervation: not as easy as it looks. Sci Transl Med. 2015;7:285fs18. doi: 10. 1126/scitranslmed. aaa5457.
5. Mahfoud F, Lüscher TF. Renal denervation: symply trapped by complexity? EurHeart J. 2015;36:199–202. doi: 10. 1093/eurheartj/ehu450.
6. Esler M. The sympathetic system and hypertension. Am J Hypert. 2000;13(1):99–105S.
7. Okada T, Pellerin O, Savard S, et al. Eligibility for renal denervation: anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol. 2015;38(1):79–87. doi: 10.1007/s00270-014-0865-6.
8. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol. 2010;105(4):570–576. doi: 10.1016/j.amjcard.2009.10.027.
9. Fengler K, Ewen S, Hollriegel R, et al. Blood pressure response to main artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc. 2017;6(1):e006196. doi: 10.1161/JAHA.117.006196.
10. Mompeo B, Maranillo E, Garcia-Touchard A, et al. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29(5):660–664. doi: 10.1002/ca.22720.
11. Kandzari DE, Kario K, Mahfoud F, et al. The SPYRAL HTN Global Clinical Trial Program: Rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J. 2016;171(5):82–91. doi: 10.1016/j.ahj.2015.08.021.
12. Kandzari DE, Bhatt DL, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(2):219–227. doi: 10.1093/eurheartj/ehu441.
13. Kandzari DE, Bhatt DL, Sobotka PA, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–535. doi: 10.1002/clc.22008.
14. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–2170. doi: 10.1016/ S0140-6736(17)32281-X.
15. Barber-Chamoux N, Esler MD. Predictive factors for successful renal denervation: should we use them in clinical trials? Eur J Clin Invest. 2017;47(2):860–867. doi: 10.1111/eci.12792.
16. Anidjar S, Salzmann JL. Elastase-induced experimental aneurysms in rats. Circulation. 1990;82(3):973–981.
17. Bi Y, Zhong H, Xu K, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation. PLoS One. 2013;8(7):e68476. doi: 10.1371/journal.pone.0068476.
18. Gross J. Thermal denaturation of collagen in the disperse dan solid state. Science. 1964;143(3609):960–961. doi: 10.1126/science.143.3609.960.
19. Venkatasubramanian RT, Wolkers WF, Shenoi MM, et al. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells. Ann Biomed Eng. 2010;38(3):694–706. doi: 10.1007/s10439-010-9921-9.
20. Brown XQ, Bartolak-Suki E, Williams C, et al. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis. J Cell Physiol. 2010;225(1):115–122. doi: 10.1002/jcp.22202.
21. Lerman LO, Schwartz RS, Grande JP, et al. Noninvasive evaluation of a novel swine model of renal artery stenosis. J Am Soc Nephrol. 1999;10(7):1455–1465.
22. Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356. doi: 10.1177/0300985811402846.
23. Aronow WS. The older man’s heart and heart disease. Med Clin North Am. 1999;83(5):1291–1303.
24. Hopkins AA, Sheridan WS, Sharif F, Murphy BP. The effect of a thermal renal denervation cycle on the mechanical roperties of the arterial wall. J Biomech. 2014;47(15):3689–3694. doi: 10.1016/j.jbiomech.2014.09.029i.
25. Mahfoud F, Schlaich M, Bohm M, et al. Catheter-based renal denervation: the next chapter begins. Eur Heart J. 2018;39:4144–4149. doi: 10.1093/eurheartj/ehy584.
26. Fudim M, Sobotka A.A, Yin Y.H, et al. Selective vs. global renal denervation: a case for less is more. Curr Hypertens Rep. 2018;20:37. doi: 10.1007/s11906-018-0838-2.
27. Lu J, Wang Z, Zhou T, Chen S, et al. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc Interv. 2015;8(6):e001847. doi: 10.1161/CIRCINTERVENTIONS.115.001847.
28. Tzafriri AR, Mahfoud F, Keating JH, et al. Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol. 2014;64:1079–1087. doi: 10.1016/j.jacc.2014.07.937
29. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol. 2017;7:263–320. doi: 10.1002/cphy.c150047
30. Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integr Comp Physiol. 2015;308:R79–R95. doi: 10.1152/ajpregu.00351.2014.
31. De Jong MR, Hoogerwaard AF, Adiyaman A, et al. Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press. 2018;27(5):271–279. doi: 10.1080/08037051.2018.1463817.
32. Murai H, Okuyama Y, Sakata Y, et al. Different responses of arterial blood pressure to electrical stimulation of the renal artery in patients with resistant hypertension. Int J Cardiol. 2015;190:296–298. doi: 10.1016/j.ijcard.2015.04.196.
33. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–1281. doi: 10.1016/S0140-6736(09)60566-3.
34. Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–1909. doi: 10.1016/S0140-6736(10)62039-9.
35. Bhatt DL, Kandzari DE, O’Neill WW, et al. SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. doi: 10.1056/NEJMoa1402670.
36. Kandzari DE, Bohm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391(10137):2346–2355. doi: 10.1016/S0140-6736(18)30951-6.
37. Tsioufis KP, Feyz L, Dimitriadis K. Safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients. Euro Intervention. 2018;14(12):e1334–e1342. doi: 10.4244/EIJ-D-18-00536.