Authors
Spirin O.A.1, Aganesov A.G.1, Aleksanyan M.M.1, Sedush N.G.2
1 Petrovsky National Research Center of Surgery, Moscow
2 National Research Center «Kurchatov Institute», Moscow
Abstract
Rationale: According to world data, radicular syndrome causing neurological disorders is 83.2 cases per 100,000 population per year, with a subsequent increase in prevalence after 40 years of age. If conservative treatment of cervical disc herniations is ineffective, surgical treatment is required. The gold standard of surgical treatment is an anterior cervical discectomy with fixation (ACDF). However, there is no consensus on the choice of the optimal material for fixation in the modern medical community.
Purpose: To review the literature sources devoted to interbody fixation of the cervical segment during discectomy, to improve the results of these operations.
Materials and Methods: We used PubMed, Elibrary, and the archives of the journals “Neurosurgery” and “Spine Surgery” to search for relevant publications.
Results: The data of the world literature on methods and materials for fixation of the cervical spine during discectomy were analyzed. We reviewed the methods of cervical segment stabilization with autograft from the iliac crest, segment fixation with a plate, interbody cages made of titanium and PEEK with and without filling with osteoconductive materials, and considered early models of biodegradable cages made of lactide polymer. According to the data obtained, the choice of material and method for fixation of the cervical segment remains an open question. The most frequent complications are related to graft migration and subsidence.
Conclusion: Taking into account the obtained data and the urgency of the problem in the Russian Research Center of Surgery named after academician B.V. Petrovsky together with the Kurchatov Institute are developing a biocompatible biodegradable device/cage for cervical spine stabilization during cervical spine surgeries. At present, medical and technical requirements for the polymer device have been formed, and a search for suitable materials is underway.
Keywords: cervical discectomy, cervical cage, intervertebral disc prosthesis, ACDF, biodegradable cage.
References
1. Colombo C, Salvioli S, Gianola S, Castellini G, Testa M. Traction Therapy for Cervical Radicular Syndrome is Statistically Significant but not Clinically Relevant for Pain Relief. A Systematic Literature Review with Meta-Analysis and Trial Sequential Analysis. J Clin Med. 2020; 9(11): 3389. doi: 10.3390/jcm9113389.
2. Sharma A, Kishore H, Singh V, Shawky Abdelgawaad A, Sinha S, Kamble PC, Jorule K, Agrawal R, Mathapati S, Deepak P. Comparative Study of Functional Outcome of Anterior Cervical Decompression and Interbody Fusion With Tricortical Stand-Alone Iliac Crest Autograft Versus Stand-Alone Polyetheretherketone Cage in Cervical Spondylotic Myelopathy. Global Spine J. 2018; 8(8): 860-865. doi: 10.1177/2192568218780345.
3. Iyer S, Kim HJ. Cervical radiculopathy. Curr Rev Musculoskelet Med. 2016; 9(3): 272-80. doi: 10.1007/s12178-016-9349-4.
4. Kalinin AA, Sanzhin BB, Aliev MA, Yusypov BR, Aglakov BM, Shepelev VV. Analysis of the results of treatment of patients with disco-radicular conflict of the cervical spine using the method of discectomy and anterior interbody fusion for a four-year period. Sibmed Journal. 2019; 2. (In Russ.) doi: 10.34673/ismu.2019.156.1.003.
5. Surgery of degenerative diseases of the spine: a national guideline. A.G. Aganesov, S.O. Arestov, D.S. Asutin, et. al. A.O. Gushcha, N.A. Konovalov, editors. Moscow. 2019. — 478 p. (In Russ.)
6. Spine surgery. Operative techniques: second edition. A.R. Vakkaro, I.M. Baron. Y.A. Shcherbuk, editor. Moscow, 2015. 422 p. (In Russ.)
7. Bohlman HH, Emery SE, Goodfellow DB, Jones PK. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am. 1993; 75(9): 1298-307. doi: 10.2106/00004623-199309000-00005.
8. Emery SE, Bohlman HH, Bolesta MJ, Jones PK. Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy. Two to seventeen-year follow-up. J Bone Joint Surg Am. 1998; 80(7): 941-51. doi: 10.2106/00004623-199807000-00002.
9. Grin AA, Kasatkin DS. Cervical Spine Insolvent Fixation in the cases of Its Traumas and Diseases. Clinical Practice. 2017; 2 (30): 49-55. (In Russ.)
10. Rhee JM, Riew KD. Dynamic anterior cervical plates. J Am Acad Orthop Surg. 2007; 15(11): 640-6. doi: 10.5435/00124635-200711000-00002.
11. Rhee JM, Park JB, Yang JY, Riew DK. Indications and techniques for anterior cervical plating. Neurol India. 2005; 53(4): 433-9. doi: 10.4103/ 0028-3886.22609.
12. Barysh AE, Kozyrev S.A. Complications after anterior interbody fixation of the cervical spine with dynamic plates. Russian Journal of Spine Surgery. 2014; 3: 22-31. (In Russ.) doi: 10.14531/ss2014.3.22-31.
13. Chung DY, Cho DC, Lee SH, et al. Preliminary surgical result of cervical spine reconstruction with a dynamic plate and titanium mesh cage. J Korean Neurosurg Soc. 2007; 41: 111-117.
14. Kristof RA, Kiefer T, Thudium M, et al. Comparison of ventral corpectomy and plate-screwinstrumented fusion with dorsal laminectomy and rod-screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J. 2009; 18:1951–1956. doi: 10.1007/ s00586-009-1110-x.
15. Han SY, Kim HW, Lee CY, Kim HR, Park DH. Stand-alone cages for anterior cervical fusion: are there no problems? Korean J. Spine. 2016; 13(1): 13-19. doi: 10.14245/kjs.2016.13.1.13.
16. Cheung ZB, Gidumal S, White S, et al. Comparison of anterior cervical discectomy and fusion with a stand-alone interbody cage versus a conventional cage-plate technique: a systematic review and meta-analysis, Glob. Spine J. 2019; 9: 446-455. doi: 10.1177/2192568218774576.
17. Oh JK, Kim TY, Lee HS, et al. Stand-alone cervical cages versus anterior cervical plate in 2-level cervical anterior interbody fusion patients: clinical outcomes and radiologic changes. J Spinal Disord Tech. 2013; 26(8): 415-20. doi: 10.1097/BSD.0b013e31824c7d22.
18. Ji GY, Oh CH, Shin DA, et al. Stand-alone Cervical Cages Versus Anterior Cervical Plates in 2-Level Cervical Anterior Interbody Fusion Patients: Analysis of Adjacent Segment Degeneration. J Spinal Disord Tech. 2015; 28(7): E433-8. doi: 10.1097/BSD.0b013e3182a355ad.
19. Zawy Alsofy S, Nakamura M, Ewelt C, et al. Comparison of stand-alone cage and cage-with-plate for monosegmental cervical fusion and impact of virtual reality in evaluating surgical results. Clin Neurol Neurosurg. 2020; 191: 105685. doi: 10.1016/j.clineuro.2020.105685.
20. Cheung ZB, Gidumal S, White S, et al. Comparison of Anterior Cervical Discectomy and Fusion With a Stand-Alone Interbody Cage Versus a Conventional Cage-Plate Technique: A Systematic Review and Meta-Analysis. Global Spine J. 2019; 9(4): 446-455. doi: 10.1177/2192568218774576.
21. Shi S, Zheng S, Li XF, Yang LL, Liu ZD, Yuan W. Comparison of 2 Zero-Profile Implants in the Treatment of Single-Level Cervical Spondylotic Myelopathy: A Preliminary Clinical Study of Cervical Disc Arthroplasty versus Fusion. PLoS One. 2016; 11(7): e0159761. doi: 10.1371/journal.pone.0159761.
22. Zhang X, Zhang X, Chen C, et al. Randomized, controlled, multicenter, clinical trial comparing BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion in China. Spine. 2012; 37: 433-438. doi: 10.1097/BRS.0b013e31822699fa.
23. Coric D, Kim PK, Clemente JD, Boltes MO, Nussbaum M, James S. Prospective randomized study of cervical arthroplasty and anterior cervical discectomy and fusion with long-term follow-up: results in 74 patients from a single site. J Neurosurg Spine. 2012; 18: 36-42. doi: 10.3171/ 2012.9.SPINE12555.
24. Caroli E, Orlando ER, D’Andrea G, Ferrante L. Anterior cervical fusion with interbody titanium cage containing surgical bone site graft: our institution’s experience in 103 consecutive cases of degenerative spondylosis. J Spinal Disord Tech. 2007; 20(3): 216-20. doi: 10.1097/01.bsd.0000211272.97109.b8.
25. : Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017; 44: 23-29. doi: 10.1016/j.jocn. 2017.06.062.
26. Park HW, Lee JK, Moon SJ, Seo SK, Lee JH, Kim SH. The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine (Phila Pa 1976). 2009; 34(17): E591-5. doi: 10.1097/BRS.0b013e3181ab8b9a.
27. Chiang CJ, Kuo YJ, Chiang YF, Rau G, Tsuang YH. Anterior cervical fusion using a polyetheretherketone cage containing a bovine xenograftp: three to five-year follow-up. Spine (Phila Pa 1976). 2008; 33(23): 2524-428. doi: 10.1097/BRS.0b013e318185289c.
28. Ahmed AF, Al Dosari MAA, Al Kuwari A, Khan NM. The outcomes of stand alone polyetheretherketone cages in anterior cervical discectomy and fusion. Int Orthop. 2021; 45(1): 173-180. doi: 10.1007/s00264-020-04760-1.
29. Farrokhi MR, Nikoo Z, Gholami M, Hosseini K. Comparison between acrylic cage and polyetheretherketone (PEEK) cage in single-level anterior cervical discectomy and fusion: a randomized clinical trial. Clin Spine Surg. 2017; 30(1): 38-46.
30. Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002; 51(6): 1343-1349.
31. Zhou J, Xia Q, Dong J, et al. Comparison of stand-alone polyetheretherketone cages and iliac crest autografts for the treatment of cervical degenerative disc diseases. Acta Neurochir. 2011; 153(1): 115-122.
32. Suess O, Schomaker M, Cabraja M, Danne M, Kombos T, Hanna M. Empty polyetheretherketone (PEEK) cages in anterior cervical diskectomy and fusion (ACDF) show slow radiographic fusion that reduces clinical improvement: results from the prospective multicenter “PIERCE-PEEK” study. Patient Saf Surg. 2017: 1112.
33. Klingler JH, Kruger MT, Sircar R, et al. PEEK cages versus PMMA spacers in anterior cervical discectomy: comparison of fusion, subsidence, sagittal alignment, and clinical outcome with a minimum 1-year follow-up. Scientific World Journal. 2014: 398396.
34. Kim YS, Park JY, Moon BJ, Kim SD, Lee JK. Is stand alone PEEK cage the gold standard in multilevel anterior cervical discectomy and fusion (ACDF)? Results of a minimum 1-year follow up. J Clin Neurosci: 2018: 47341-47346.
35. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord. 2012; 13: 172. doi: 10.1186/ 1471-2474-13-172.
36. Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials. 2022; 288: 121699. doi: 10.1016/j.biomaterials.2022.121699.
37. Arzhakova OV, Arzhakov MS, Badamshina ER, et. al. Russ. Chem. Rev. 2022; 91(12). (In Russ.)
38. Agadzhanyan VV, Pronskikh AA, Demina VA, Gomzyak VI, Sedush NG, Chvalun SN. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016; 4: 85-93. (In Russ.)
39. Dijk M, et.al. The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion. SPINE. 2002; 27(7): 682-688.
40. Smit TH. The use of a quadruped as an in vivo model for the study of the spine — biomechanical considerations. Eur Spine J. 2002; 11(2): 137-44. doi: 10.1007/s005860100346.
41. ASTM D F2077-22; Standard Test Methods for Intervertebral Body Fusion Devices. ASTM International: West Conshohocken, PA, USA, 2022.
42. ISO 23089-2:2021; Implants for surgery — Pre-clinical mechanical assessment of spinal implants and particular requirements — Part 2: Spinal intervertebral body fusion devices. ISO: Geneva, Switzerland, 2021.
43. ASTM D F2267-22; Standard Test Method for Measuring Load-Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression. ASTM International: West Conshohocken, PA, USA, 2022.