Authors
Kuznetsova N.B.1, Bushtyreva I.O.2, Dybova V.S.1, Barinova V.V.1, Dmitrieva M.P.1
1 Rostov State Medical University, Rostov-on-Don
2 Private maternity hospital «Clinic of Professor Bushtyreva» Ltd., Rostov-on-Don
Abstract
Preterm rupture of the membranes is a violation of the membranes of the fetus and effusion of amniotic fluid prior to the onset of labor, regardless of the gestational age. The frequency of this pathology is about 2-3% among all pregnancies and 30–50% among preterm births. In the structure of preterm labor, the frequency of preterm rupture of the membranes is 30–50%.
Pregnancy and premature labor, that are complicated by preterm rupture of membranes, increase the frequency of maternal (chorioamnionitis, placental abruption), and neonatal complications (intrauterine infection, necrotizing enterocolitis, intraventricular hemorrhage), compared with premature birth with equal gestational age, but without preterm rupture of membranes. This allows to be sure, that premature labor with preterm rupture of the membranes and without preterm rupture of the membranes should be considered as separate clinical groups.
Keywords: pregnancy, preterm rupture of membranes, premature labor.
References
1. Kuzmin VN. Perinatal’nye iskhody pri prezhdevremennom razryve plodnykh obolochek. Practitioner. 2018;(3):34–38. (In Russ).
2. Shadrina AS, Plieva YZ, Kushlinskiy DN, et al. Classification, regulation of activity, and genetic polymorphism of matrix metalloproteinases in health and disease. Almanac of Clinical Medicine. 2017;45(4):266–279. (In Russ). doi: 10.18786/2072-0505-2017-45-4-266-279.
3. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014; 9(3):e90784. doi: 10.1371/journal.pone.0090784.
4. Athayde N, Edwin SS, Romero R, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol. 1998;179(5): 1248–1253. doi: 10.1016/s0002-9378(98)70141-3.
5. Brown RG, Marchesi JR, Lee YS, et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018;16(1):9. doi: 10.1186/s12916-017-0999-x.
6. Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1998;19(1):1–11. doi: 10.1016/s0143-4004 (98 )90092-3.
7. Chandiramani M, Bennett PR, Brown R, et al. Vaginal microbiome-pregnant host interactions determine a significant proportion of preterm labour. Fetal Matern Med Rev. 2014;25(1):73–78. doi: 10.1017/s0965539514000059.
8. DiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38–57. doi: 10.1111/j.1600-0897.2010.00830.x.
9. Dutta EH, Behnia F, Boldogh I, et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod. 2016;22(2):143–157. doi: 10.1093/molehr/gav074.
10. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4):495–516. doi: 10.1080/01926230701320337.
11. Faramarzi S, Kayisli UA, Kayisli O, et al. Decidual cell expressed tissue factor promotes endometrial hemostasis while mediating abruption associated preterm birth. ARSci. 2013;1(3):44–50. doi: 10.4236/arsci.2013.13007.
12. Flores-Pliego A, Espejel-Nuñez A, Castillo-Castrejon M, et al. Matrix Mmetalloproteinase-3 (MMP-3) is an endogenous activator of the MMP-9 secreted by placental leukocytes: implication in human labor. PLoS One. 2015;10(12):e0145366. doi: 10.1371/journal.pone.0145366.
13. Fortner KB, Grotegut CA, Ransom CE, et al. Bacteria localization and chorion thinning among preterm premature rupture of membranes. PLoS One. 2014;9(1):e83338. doi: 10.1371/journal.pone.0083338.
14. Fortunato SJ, Menon R, Lombardi SJ. Stromelysins in placental membranes and amniotic fluid with premature rupture of membranes. Obstet Gynecol. 1999;94 (3):435–440. doi: 10.1016/s0029-7844(99)00336-1.
15. George RB, Kalich J, Yonish B, Murtha AP. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. Am J Perinatol. 2008;25(1):29–32. doi: 10.1055/s-2007-1004828.
16. Gervasi MT, Romero R, Bracalente G, et al. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25(10):2002–2013. doi: 10.3109/14767058.2012.683899.
17. Harger JH, Hsing AW, Tuomala RE, et al. Risk factors for preterm premature rupture of fetal membranes: a multicenter case-control study. Am J Obstet Gynecol. 1990;163(1 Pt 1):130–137. doi: 10.1016/s0002-9378(11)90686-3.
18. Hermanns-Lê T, Piérard GE. Collagen fibril arabesques in connective tissue disorders. Am J Clin Dermatol. 2006;7(5):323–326. doi: 10.2165/00128071-200607050-00006.
19. Joyce EM, Moore JJ, Sacks MS. Biomechanics of the fetal membrane prior to mechanical failure: review and implications. Eur J Obstet Gynecol Reprod Biol. 2009; 144 Suppl 1:S121–127. doi: 10.1016/j.ejogrb.2009.02.014.
20. Kacerovsky M, Musilova I, Jacobsson B, et al. Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(2):134–140. doi: 10.3109/14767058.2014.908179.
21. Kasper DC, Mechtler TP, Böhm J, et al. In utero exposure to Ureaplasma spp. is associated with increased rate of bronchopulmonary dysplasia and intraventricular hemorrhage in preterm infants. J Perinat Med. 2011;39(3):331–336. doi: 10.1515/JPM.2011.022.
22. Kumar D, Moore RM, Mercer BM, et al. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta. 2016;42:59–73. doi: 10.1016/j.placenta.2016.03.015.
23. Lykke JA, Dideriksen KL, Lidegaard O, Langhoff-Roos J. First-trimester vaginal bleeding and complications later in pregnancy. Obstet Gynecol. 2010;115(5):935–944. doi: 10.1097/AOG.0b013e3181da8d38.
24. Maymon E, Romero R, Pacora P, et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am J Obstet Gynecol. 2000;183(4):914–920. doi: 10.1067/mob.2000.108879.
25. Maymon E, Romero R, Pacora P, et al. Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. Am J Obstet Gynecol. 2000;182(6):1545–1553. doi: 10.1067/mob.2000.107652.
26. Maymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol. 2000;183(4):887–894. doi: 10.1067/mob.2000.108878.
27. Musilova I, Andrys C, Drahosova M, et al. Amniotic fluid prostaglandin E2 in pregnancies complicated by preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2016;29(18):2915–2923. doi: 10.3109/14767058.2015.1112372.
28. Musilova I, Andrys C, Drahosova M, et al. Cervical fluid interleukin 6 and intra-amniotic complications of preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2018;31(7):827–836. doi: 10.1080/14767058.2017.1297792.
29. Musilova I, Andrys C, Drahosova M, et al. Intraamniotic inflammation and umbilical cord blood interleukin-6 concentrations in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2017;30(8):900–910. doi: 10.1080/14767058.2016.1197900.
30. Musilova I, Kacerovsky M, Stepan M, et al. Maternal serum C-reactive protein concentration and intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One. 2017;12(8):e0182731. doi: 10.1371/journal.pone.0182731.
31. Negara KS, Suwiyoga K, Pemayun TG, et al. The role of caspase-3, apoptosis-inducing factor, and B-cell lymphoma-2 expressions in term premature rupture of membrane. Rev Bras Ginecol Obstet. 2018;40(12):733–739. doi: 10.1055/s-0038-1675611.
32. Oh KJ, Lee SE, Jung H, et al. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38(3):261–268. doi: 10.1515/JPM.2010.040.
33. Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–670. doi: 10.1056/NEJM199803053381006.
34. Puthiyachirakkal M, Lemerand K, Kumar D, et al. Thrombin weakens the amnion extracellular matrix (ECM) directly rather than through protease activated receptors. Placenta. 2013;34(10):924–931. doi: 10.1016/j.placenta.2013.07.064.
35. Romero R, Chaiworapongsa T, Espinoza J, et al. Fetal plasma MMP-9 concentrations are elevated in preterm premature rupture of the membranes. Am J Obstet Gynecol. 2002;187(5):1125–1130. doi: 10.1067/mob.2002.127312.
36. Romero R, Maymon E, Pacora P, et al. Further observations on the fetal inflammatory response syndrome: a potential homeostatic role for the soluble receptors of tumor necrosis factor alpha. Am J Obstet Gynecol. 2000;183(5):1070–1077. doi: 10.1067/mob.2000.108885.
37. Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394–1409. doi: 10.3109/14767058.2014.958463.
38. Saglam A, Ozgur C, Derwig I, et al. The role of apoptosis in preterm premature rupture of the human fetal membranes. Arch Gynecol Obstet. 2013;288(3):501–505. doi: 10.1007/s00404-013-2774-3.
39. Skogstrand K, Hougaard DM, Schendel DE, et al. Association of preterm birth with sustained postnatal inflammatory response. Obstet Gynecol. 2008;111(5): 1118–1128. doi: 10.1097/AOG.0b013e31817057fb.
40. Sukhikh GT, Kan NE, Tyutyunnik VL, et al. The role of extracellular inducer of matrix metalloproteinases in premature rupture of membranes. J Matern Fetal Neonatal Med. 2016;29(4):656–659. doi: 10.3109/14767058.2015.1015416.
41. Tchirikov M, Schlabritz-Loutsevitch N, Maher J, et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med. 2018;46(5):465–488. doi: 10.1515/jpm-2017-0027.
42. Vadillo-Ortega F, Estrada-Gutiérrez G. Role of matrix metalloproteinases in preterm labour. BJOG. 2005;112 Suppl 1:19–22. doi: 10.1111/j.1471-0528.2005.00579.x.
43. Velemínský M, Tosner J. Relationship of vaginal microflora to PROM, pPROM and the risk of early-onset neonatal sepsis. Neuro Endocrinol Lett. 2008;29(2): 205–221.
44. Verbruggen SW, Oyen ML, Phillips AT, Nowlan NC. Function and failure of the fetal membrane: modelling the mechanics of the chorion and amnion. PLoS One. 2017;12(3):e0171588. doi: 10.1371/journal.pone.0171588.
45. Wall PD, Pressman EK, Woods JR Jr. Preterm premature rupture of the membranes and antioxidants: the free radical connection. J Perinat Med. 2002;30(6): 447–457. doi: 10.1515/JPM.2002.071.
46. Wang XJ, Li L, Cui SH. [Role of collagen III, CTGF and TNF-alpha in premature rupture of human fetal membranes. (In Chinese).] Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):658–675.
47. Weiss A, Goldman S, Shalev E. The matrix metalloproteinases (MMPS) in the decidua and fetal membranes. Front Biosci. 2007;12:649–659. doi: 10.2741/2089.
48. Williams MA, Mittendorf R, Lieberman E, Monson RR. Adverse infant outcomes associated with first-trimester vaginal bleeding. Obstet Gynecol. 1991;78(1):14–18.
49. Yu H, Wang X, Gao H, et al. Perinatal outcomes of pregnancies complicated by preterm premature rupture of the membranes before 34 weeks of gestation in a tertiary center in China: a retrospective review. Biosci Trends. 2015;9(1):35–41. doi: 10.5582/bst.2014.01058.
50. Zhu J, He M, Ma C, et al. Expression and clinical significance of NOD-like receptor protein 3 (NLRP3) and caspase-1 in fetal membrane and placental tissues of patients with premature rupture of membrane. Med Sci Monit. 2018;24:1560–1566. doi: 10.12659/msm.906157.