DOI: 10.25881/20728255_2021_16_2_98

Authors

Litvinov А.А.

St. George thoracic and cardiovascular surgery clinic Pirogov National Medical and Surgical Center, Moscow

Abstract

The article is devoted to the mechanical properties description and comparison of the stents characteristics used for venous stenting. There is indicated the importance of implantable stents safety problem, the requirements for implantable structures are reflected. The authors show the principal complications of this intervention, concerning the mechanical properties of the installed stents, the reasons for their occurrence and the research results devoted to it. Also, authors described the forces arising from the interaction of a venous stent with surrounding tissues and organs, its point of application and possibilities, depending on the structure of the stent. In nowadays endovascular stenting can help the patients with different level of venous obstructions, however the possible complications risk must be estimate in case of functional vein part stenting.
Further technologies progress and the study of this problem will make venous stenting a routine intervention for this pathology.

Keywords: venous stenting, May-Turner syndrome, postthrombotic syndrome, stent.

References

1. Shevchenko Ju.L., Stojko Ju.M. Klinicheskaja flebologija. Moscow: DPK Press, 2016 (In Russ).

2. Vedenskij, A.N. Posttromboticheskaja bolezn'. L.: Medicina, 1986. (In Russ).

3. Neglén P, Thrasher TL, Raju S. Venous outflow obstruction: An underestimated contributor to chronic venous disease. J Vasc Surg. 2003; 38(5): 879-885. doi:10.1016/s0741-5214(03)01020-6.

4. Seager MJ, Busuttil A, Dharmarajah B, Davies AH. Editor's Choice. A Systematic Review of Endovenous Stenting in Chronic Venous Disease Secondary to Iliac Vein Obstruction. Eur J Vasc Endovasc Surg. 2016; 51(1): 100-120. doi:10.1016/j.ejvs.2015.09.002.

5. Raju S. Best management options for chronic iliac vein stenosis and occlusion. J Vasc Surg. 2013; 57(4): 1163-1169. doi:10.1016/j.jvs.2012.11.084.

6. Dotter CT. Transluminally-placed coilspring endarterial tube grafts. Long-term patency in canine popliteal artery. Invest Radiol. 1969; 4(5): 329-332. doi:10.1097/00004424-196909000-00008.

7. Wright KC, Wallace S, Charnsangavej C, Carrasco CH, Gianturco C. Percutaneous endovascular stents: an experimental evaluation. Radiology. 1985; 156(1): 69-72. doi:10.1148/radiology.156.1.4001423.

8. Zollikofer CL, Largiader I, Bruhlmann WF, Uhlschmid GK, Marty AH. Endovascular stenting of veins and grafts: preliminary clinical experience. Radiology. 1988; 167(3): 707-712. doi:10.1148/radiology.167.3.2966417.

9. Elson JD, Becker GJ, Wholey MH, Ehrman KO. Vena caval and central venous stenoses: management with Palmaz balloon-expandable intraluminal stents. J Vasc Interv Radiol. 1991; 2(2): 215-223. doi:10.1016/s1051-0443(91)72285-9.

10. Berger A, Jaffe JW, York TN. Iliac compression syndrome treated with stent placement. J Vasc Surg. 1995; 21(3): 510-514. doi:10.1016/s0741-5214(95)70295-4.

11. Anaya-Ayala JE, Smolock CJ, Colvard BD, et al. Efficacy of covered stent placement for central venous occlusive disease in hemodialysis patients. J Vasc Surg. 2011; 54(3): 754-759. doi:10.1016/j.jvs.2011.03.260.

12. Verstandig AG, Berelowitz D, Zaghal I, et al. Stent grafts for central venous occlusive disease in patients with ipsilateral hemodialysis access. J Vasc Interv Radiol. 2013; 24(9): 1280-1288. doi:10.1016/j.jvir.2013.04.016.

13. Gordon BM, Fishbein MC, Levi DS. Polytetrafluoroethylene-covered stents in the venous and arterial system: angiographic and pathologic findings in a swine model. Cardiovasc Pathol. 2008; 17(4): 206-211. doi:10.1016/j.carpath.2007.09.001.

14. Patent RUS №2143246/03.06.99. Prokubovskiĭ VI, Kapranov SA, Savel'ev VS, Balan AN, Zashherinskaja NA, Lomkov SS, Nikitina AV, Polikarpov OV, Polikarpov IV. Vnutrisosudistyĭ stent-fil'tr. (In Russ).

15. Kapranov SA, Zlatovratskii AG, Kuznetsova VF, Balan AN, Khachaturov AA. Intravenoznyi stent-fil'tr v profilaktike tromboehmbolii legochnoi arterii. Mezhdunarodnyi zhurnal interventsionnoi kardioangiologii. 2006; 11: 62-67. (In Russ).

16. Fung YC. Biomechanics. New York: Springer; c1993. Chapter 8, Mechanical properties and active remodeling of blood vessels; p. 321-91.

17. Kim DB, Choi H, Joo SM, et al. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility. Artif Organs. 2013; 37(4): 368-379. doi:10.1111/aor.12001.

18. Palmaz JC. Intravascular stents: tissue-stent interactions and design considerations. AJR Am J Roentgenol. 1993; 160(3): 613-618. doi:10.2214/ajr.160.3.8430566.

19. Freeman JW, Snowhill PB, Nosher JL. A link between stent radial forces and vascular wall remodeling: the discovery of an optimal stent radial force for minimal vessel restenosis. Connect Tissue Res. 2010; 51(4): 314-326. doi:10.3109/03008200903329771.

20. Dabir D, Feisst A, Thomas D, et al. Physical Properties of Venous Stents: An Experimental Comparison. Cardiovasc Intervent Radiol. 2018; 41(6): 942-950. doi:10.1007/s00270-018-1916-1.

21. Wu Z, Zheng X, He Y, et al. Stent migration after endovascular stenting in patients with nutcracker syndrome. J Vasc Surg Venous Lymphat Disord. 2016; 4(2): 193-199. doi:10.1016/j.jvsv.2015.10.005.

22. Megson THG. Stress and strain. In: Megson THG, editor. Structural and Stress Analysis. Third Edition. Boston: Butterworth-Heinemann; 2014. p. 146–183, Chapter 7.

23. Agianniotis A, Rezakhaniha R, Stergiopulos N. A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins. Biomed Eng Online. 2011; 10: 18. doi:10.1186/1475-925X-10-18.

24. Lee JM, Wilson GJ. Anisotropic tensile viscoelastic properties of vascular graft materials tested at low strain rates. Biomaterials. 1986; 7(6): 423-431. doi:10.1016/0142-9612(86)90029-3.

25. McGilvray KC, Sarkar R, Nguyen K, Puttlitz CM. A biomechanical analysis of venous tissue in its normal and post-phlebitic conditions. J Biomech. 2010; 43(15): 2941-2947. doi:10.1016/j.jbiomech.2010.07.012.

26. Zhao HQ, Nikanorov A, Virmani R, Jones R, Pacheco E, Schwartz LB. Late stent expansion and neointimal proliferation of oversized Nitinol stents in peripheral arteries. Cardiovasc Intervent Radiol. 2009; 32(4): 720-726. doi:10.1007/s00270-009-9601-z.

27. Lichtenberg M, de Graaf R, Stahlhoff WF, Özkapi A, Simon M, Breuckmann F. Patency rates, safety and clinical results of the sinus-Obliquus venous stent in the treatment of chronic ilio-femoral venous outflow obstruction - data from the Arnsberg venous registry. Vasa. 2019; 48(3): 270-275. doi:10.1024/0301-1526/a000772.

28. Razavi MK, Black S, Gagne P, et al. Pivotal Study of Endovenous Stent Placement for Symptomatic Iliofemoral Venous Obstruction. Circ Cardiovasc Interv. 2019; 12(12): e008268. doi:10.1161/CIRCINTERVENTIONS.119.008268.

29. O'Sullivan GJ, Sheehan J, Lohan D, McCann-Brown JA. Iliofemoral venous stenting extending into the femoral region: initial clinical experience with the purpose-designed Zilver Vena stent. J Cardiovasc Surg (Torino). 2013; 54(2): 255-261.

30. The VENOVO™ Venous Stent Study for Treatment of Iliofemoral Occlusive Disease.

31. Black SA. ABRE study: 12 month results of the Abre venous stent system. Presented on: June 16, 2020. Charing Cross Symposium.

32. Venous Stent for the Iliofemoral Vein Investigational Clinical Trial Using the DUO Venous Stent System (VIVID).

33. Stuck A., Kunz S., Baumgartner I., Kucher N. Patency and сlinical outcomes of a dedicated, self-expanding, hybrid oblique stent used in the treatment of common iliac vein com- pression. J. Endovasc. Ther. 2017; 24(1): 159–166. doi: 10.1177/1526602816676803.

34. Lichtenberg M., Breuckmann F., Stahlhoff W., Neglén P., Rick G. Placement of closed-cell designed venous stents in a mixed cohort of patients with chronic venous outflow obstructions – short-term safety, patency, and clinical outcomes. Vasa. 2018; 47(6): 475–81. doi: 10.1024/0301-1526/a000731.

35. de Wolf MA, de Graaf R, Kurstjens RL, Penninx S, Jalaie H, Wittens CH. Short-Term Clinical Experience with a Dedicated Venous Nitinol Stent: Initial Results with the Sinus-Venous Stent. Eur J Vasc Endovasc Surg. 2015; 50(4): 518-526. doi:10.1016/j.ejvs.2015.05.011.

36. Saha P, Gwozdz A, Hagley D, El-Sayed T, Hunt B, McDonald V, et al. Patency rates after stenting across the inguinal ligament for treatment of post-thrombotic syndrome using nitinol venous stents. J. Vasc. Surg. Venous Lymphat. Disord. 2017; 5(1): 148. doi: 10.1016/j.jvsv.2016.10.018.

37. Uhl JF, Gillot C. Anatomy of the Hunter's canal and its role in the venous outlet syndrome of the lower limb. Phlebology. 2015; 30(9): 604-611. doi:10.1177/0268355514551086.

38. Tom Hogervors, E. Vereecke. Evolution of the human hip. Journal of Hip Preservation Surgery. 1(2): 39-45. doi: 10.1093/jhps/hnu013.

39. Veniti Inc., 2014. Cadaver Study Report, Document #STE- RSD-005-B (Unpublished Data).

40. Lytle WJ. Inguinal anatomy. J Anat. 1979; 128(3): 581-594.

41. Lytle WJ. The inguinal and lacunar ligaments. J Anat. 1974; 118(2): 241-251.

42. Veniti Inc., 2017. Veniti VICI Venous Stent Fractures Root Cause and Clinical Implications (Unpublished Data).

For citation

Litvinov А.А. Comparative characteristics of venous stents. Bulletin of Pirogov National Medical & Surgical Center. 2021;16(2):98-104. (In Russ.) https://doi.org/10.25881/20728255_2021_16_2_98